论文标题

基于图形估计的学习触觉模型

Learning Tactile Models for Factor Graph-based Estimation

论文作者

Sodhi, Paloma, Kaess, Michael, Mukadam, Mustafa, Anderson, Stuart

论文摘要

我们对在遮挡下操纵过程中从触摸中估算对象状态的问题感兴趣。在这项工作中,我们解决了在平面推动过程中估算对象构成的问题的问题。基于视觉的触觉传感器在接触点可提供丰富的本地图像测量。但是,单个这样的测量包含有限的信息,需要进行多个测量来推断潜在的对象状态。我们使用因子图解决了此推论问题。为了将触觉测量纳入图中,我们需要可以将高维触觉图像映射到低维状态空间的本地观察模型。先前的工作使用了低维力测量或工程功能来解释触觉测量。但是,这些方法可能是脆弱的,难以在物体和传感器之间扩展。我们的主要见解是直接学习触觉观察模型,以预测传感器的相对姿势给定两对触觉图像。然后可以将这些相对姿势作为因子图表纳入因子。我们提出了一种两阶段的方法:首先,我们学习使用地面真实数据监督的本地触觉观察模型,然后将这些模型与物理和几何因素一起集成到因子图优化器中。我们仅使用触觉反馈来证明可靠的对象跟踪,用于150个现实世界平面推动序列,在三种对象形状上具有不同的轨迹。补充视频:https://youtu.be/y1kbfsmi8w0

We're interested in the problem of estimating object states from touch during manipulation under occlusions. In this work, we address the problem of estimating object poses from touch during planar pushing. Vision-based tactile sensors provide rich, local image measurements at the point of contact. A single such measurement, however, contains limited information and multiple measurements are needed to infer latent object state. We solve this inference problem using a factor graph. In order to incorporate tactile measurements in the graph, we need local observation models that can map high-dimensional tactile images onto a low-dimensional state space. Prior work has used low-dimensional force measurements or engineered functions to interpret tactile measurements. These methods, however, can be brittle and difficult to scale across objects and sensors. Our key insight is to directly learn tactile observation models that predict the relative pose of the sensor given a pair of tactile images. These relative poses can then be incorporated as factors within a factor graph. We propose a two-stage approach: first we learn local tactile observation models supervised with ground truth data, and then integrate these models along with physics and geometric factors within a factor graph optimizer. We demonstrate reliable object tracking using only tactile feedback for 150 real-world planar pushing sequences with varying trajectories across three object shapes. Supplementary video: https://youtu.be/y1kBfSmi8w0

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源