论文标题
对实时剂量优化的深度学习CT重建的鲁棒性调查
Robustness Investigation on Deep Learning CT Reconstruction for Real-Time Dose Optimization
论文作者
论文摘要
在计算机断层扫描(CT)中,自动暴露控制(AEC)经常用于减少对患者的辐射剂量暴露。对于特定于器官的AEC,必须进行初步的CT重建以估算剂量优化的器官形状,在实时重建中只允许几个预测。在这项工作中,我们研究了此类应用中通过歧管近似(AUTOMAP)进行自动变换的性能。为了获得概念证明,我们首先研究了其在MNIST数据集上的性能,其中包含所有10位数字的数据集随机分为训练集和测试集。我们直接从2个预测或4个预测训练自动图模型进行图像重建。测试结果表明,Automap能够以1.6%和6.8%的虚假速率很好地重建大多数数字。在我们随后的实验中,MNIST数据集以训练集仅包含9位数字的方式进行分配,例如,测试集仅包含排除的数字,例如“ 2”。在测试结果中,使用2个投影进行重建时,数字“ 2” s被错误地预测为“ 3”或“ 5”,虚假率为94.4%。对于医学图像中的应用,还对患者的CT图像进行了训练。测试图像达到290 HU的平均根平方误差。尽管粗糙的身体轮廓已很好地重建,但某些器官被弄错了。
In computed tomography (CT), automatic exposure control (AEC) is frequently used to reduce radiation dose exposure to patients. For organ-specific AEC, a preliminary CT reconstruction is necessary to estimate organ shapes for dose optimization, where only a few projections are allowed for real-time reconstruction. In this work, we investigate the performance of automated transform by manifold approximation (AUTOMAP) in such applications. For proof of concept, we investigate its performance on the MNIST dataset first, where the dataset containing all the 10 digits are randomly split into a training set and a test set. We train the AUTOMAP model for image reconstruction from 2 projections or 4 projections directly. The test results demonstrate that AUTOMAP is able to reconstruct most digits well with a false rate of 1.6% and 6.8% respectively. In our subsequent experiment, the MNIST dataset is split in a way that the training set contains 9 digits only while the test set contains the excluded digit only, for instance "2". In the test results, the digit "2"s are falsely predicted as "3" or "5" when using 2 projections for reconstruction, reaching a false rate of 94.4%. For the application in medical images, AUTOMAP is also trained on patients' CT images. The test images reach an average root-mean-square error of 290 HU. Although the coarse body outlines are well reconstructed, some organs are misshaped.