论文标题
太阳邻居中温暖中性培养基的热和湍流特性
Thermal and turbulent properties of the Warm Neutral Medium in the solar neighborhood
论文作者
论文摘要
从弥漫性温暖中性培养基(WNM)到致密冷中性培养基(CNM)的过渡是将初始条件设置为分子云的形成的原因。 WNM中湍流级联反应的特性,描述了这种辐射凝结过程,部分原因是由于难以绘制每个H I热相的结构和运动学的困难。在这里,我们对GHIGLS HI调查的21 cm超光谱数据立方体进行了分析,其中使用ROHSA提取WNM的贡献,Rohsa是一种高斯分解工具,其中包括空间正则化。 WNM发射的距离和体积是使用3D尘埃灭绝图信息估算的。使用两种技术对WNM多普勒线宽度的热和湍流贡献基于柱密度和质心速度场的统计特性,而另一个基于CNM结构的相对运动作为湍流运动的探针。我们发现,此处采样的WNM的体积位于局部气泡的外边缘,显示了典型的太阳能邻域的加热和冷却过程的预期值。 WNM具有子/跨性别湍流的性质,此处探测的最大尺度的湍流马赫数(L = 130 pc)的MS = 0.87 +-0.15,密度对比度为0.6 +-0.2,速度和速度和密度功率光谱兼容与K-111/3相兼容。 WNM的低马赫数提供了动态条件,使热不稳定性(TI)的冷凝模式自由生长并形成CNM结构,如理论所预测的那样。
The transition from the diffuse warm neutral medium (WNM) to the dense cold neutral medium (CNM) is what set the initial conditions to the formation of molecular clouds. The properties of the turbulent cascade in the WNM, essential to describe this radiative condensation process, have remained elusive in part due to the difficulty to map out the structure and kinematics of each H I thermal phases. Here we present an analysis of a 21 cm hyper-spectral data cube from the GHIGLS HI survey where the contribution of the WNM is extracted using ROHSA, a Gaussian decomposition tool that includes spatial regularization. The distance and volume of the WNM emission is estimated using 3D dust extinction map information. The thermal and turbulent contributions to the Doppler line width of the WNM were disentangled using two techniques, one based on the statistical properties of the column density and centroid velocity fields, and another on the relative motions of CNM structures as a probe of turbulent motions. We found that the volume of WNM sampled here, located at the outer edge of the Local Bubble, shows thermal properties in accordance with expected values for heating and cooling processes typical of the Solar neighbourhood. The WNM has the properties of sub/trans-sonic turbulence, with a turbulent Mach number at the largest scale probed here (l = 130 pc) of Ms = 0.87 +- 0.15, a density contrast of 0.6 +- 0.2, and velocity and density power spectra compatible with k-11/3. The low Mach number of the WNM provides dynamical conditions that allows the condensation mode of thermal instability (TI) to grow freely and form CNM structures, as predicted by theory.