论文标题

联合分配系统状态估计的层次深度参与者批评方法

A Hierarchical Deep Actor-Critic Learning Method for Joint Distribution System State Estimation

论文作者

Yuan, Yuxuan, Dehghanpour, Kaveh, Wang, Zhaoyu, Bu, Fankun

论文摘要

由于挥发性分布式光伏(PV)资源的渗透增加,对网格边缘客户的实时监控已成为一项关键任务。但是,这需要共同解决分布和次要分布网格的分布系统状态估计(DSSE),这在计算上是复杂的,并且缺乏对大型系统的可扩展性。为了实现DSSE的接近实时解决方案,我们提出了一种新型的分层增强学习辅助框架:在第一层,加权最小二乘(WLS)算法在初级中型电压馈线上求解了DSSE;在第二层,使用测量残差对每个二级变压器进行了深批评者(A-C)模块,以估计低压电路的状态并捕获PVS对网格边缘的影响。当A-C参数学习过程脱机时,训练有素的A-C模块是在线部署的,以进行快速的次要网格状态估计;这是框架的可扩展性和计算效率的关键因素。为了保持监视精度,两个级别在次要节点上相互交换边界信息,包括变压器电压(第一层至第二层)和主动/反应性总功率注入(第二层至第一层)。这种交互信息传递策略导致了闭环结构,该结构能够在少数迭代中跟踪两层的最佳解决方案。此外,我们的模型可以使用第一层的Jacobian矩阵来处理拓扑变化。我们已经使用实际实用程序数据和馈线模型进行了数值实验,以验证所提出的框架的性能。

Due to increasing penetration of volatile distributed photovoltaic (PV) resources, real-time monitoring of customers at the grid-edge has become a critical task. However, this requires solving the distribution system state estimation (DSSE) jointly for both primary and secondary levels of distribution grids, which is computationally complex and lacks scalability to large systems. To achieve near real-time solutions for DSSE, we present a novel hierarchical reinforcement learning-aided framework: at the first layer, a weighted least squares (WLS) algorithm solves the DSSE over primary medium-voltage feeders; at the second layer, deep actor-critic (A-C) modules are trained for each secondary transformer using measurement residuals to estimate the states of low-voltage circuits and capture the impact of PVs at the grid-edge. While the A-C parameter learning process takes place offline, the trained A-C modules are deployed online for fast secondary grid state estimation; this is the key factor in scalability and computational efficiency of the framework. To maintain monitoring accuracy, the two levels exchange boundary information with each other at the secondary nodes, including transformer voltages (first layer to second layer) and active/reactive total power injection (second layer to first layer). This interactive information passing strategy results in a closed-loop structure that is able to track optimal solutions at both layers in few iterations. Moreover, our model can handle the topology changes using the Jacobian matrices of the first layer. We have performed numerical experiments using real utility data and feeder models to verify the performance of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源