论文标题

双场理论代数和弯曲$ l_ \ infty $ - 代数

Double field theory algebroid and curved $L_\infty$-algebras

论文作者

Grewcoe, Clay James, Jonke, Larisa

论文摘要

DFT代数是公制(或VAISMAN)代数的特殊情况,与理解双场理论的对称性相关。特别是,DFT代数是在载体束上定义的结构,该载体束上的二倍时空,配备了双场理论的C型支架。在本文中,我们将DFT代数的定义作为弯曲的$ l_ \ infty $ -Algebra,并显示如何将双场理论强限制的实施作为$ l_ \ infty $ infty $ -Algebra形态。我们的结果为双场理论和相应的Sigma模型的构建提供了有用的步骤。

A DFT algebroid is a special case of the metric (or Vaisman) algebroid, shown to be relevant in understanding the symmetries of double field theory. In particular, a DFT algebroid is a structure defined on a vector bundle over doubled spacetime equipped with the C-bracket of double field theory. In this paper we give the definition of a DFT algebroid as a curved $L_\infty$-algebra and show how implementation of the strong constraint of double field theory can be formulated as an $L_\infty$-algebra morphism. Our results provide a useful step towards coordinate invariant descriptions of double field theory and the construction of the corresponding sigma-model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源