论文标题

强烈连接的影响图中剂的极化和信念融合

Polarization and Belief Convergence of Agents in Strongly-Connected Influence Graphs

论文作者

Alvim, Mário S., Amorim, Bernardo, Knight, Sophia, Quintero, Santiago, Valencia, Frank

论文摘要

我们描述了一个基于Esteban和Ray经济学的经典度量的多代理系统中极化的模型。代理人通过基于他人的信念和潜在影响图更新信念(观点)来发展。我们表明,如果影响图紧密连接,极化最终会消失(收敛至零)。如果影响图是循环,我们确定所有代理都会融合到的独特信念值。对于集团影响图,我们确定代理人将达到特定意见差异之后的时间。我们的结果表明,如果极化不消失,那么要么有一个断开的代理子组或某些药物对其他人的影响更大。最后,我们表明极化不一定在弱连接的图中消失,并通过一系列案例研究和模拟说明了模型,从而提供了一些有关极化的见解。

We describe a model for polarization in multi-agent systems based on Esteban and Ray's classic measure of polarization from economics. Agents evolve by updating their beliefs (opinions) based on the beliefs of others and an underlying influence graph. We show that polarization eventually disappears (converges to zero) if the influence graph is strongly-connected. If the influence graph is a circulation we determine the unique belief value all agents converge to. For clique influence graphs we determine the time after which agents will reach a given difference of opinion. Our results imply that if polarization does not disappear then either there is a disconnected subgroup of agents or some agent influences others more than she is influenced. Finally, we show that polarization does not necessarily vanish in weakly-connected graphs, and illustrate the model with a series of case studies and simulations giving some insights about polarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源