论文标题

解析元素方程的解决方案的分析性

Analyticity of the solutions to degenerate Monge-Ampère equations

论文作者

Huang, Genggeng, Lü, Yingshu

论文摘要

本文专门研究以下退化的monge-ampère方程:\ begin {eqnarray} \ label {ab1} \ begin {cases} \ det d^2 u =λ_q(-u) \partialΩ\ end {cases} \ end {eqnarray}对于某些正常数$λ_q$。假设$ω\ subset \ subset \ mathbb r^n $均匀凸和分析。然后,在\ mathbb z^+$中提供了$ \barΩ$中的退化monge-ampère方程的解决方案。

This paper is devoted to study the following degenerate Monge-Ampère equation: \begin{eqnarray}\label{ab1} \begin{cases} \det D^2 u=Λ_q (-u)^q \quad \text{in}\quad Ω,\\ u=0 \quad\text{on}\quad \partialΩ\end{cases} \end{eqnarray} for some positive constant $Λ_q$. Suppose $Ω\subset\subset \mathbb R^n$ is uniformly convex and analytic. Then the solution of the degenerate Monge-Ampère equation is analytic in $\barΩ$ provided $q\in \mathbb Z^+$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源