论文标题

ID-Reveal:身份感知的深击视频检测

ID-Reveal: Identity-aware DeepFake Video Detection

论文作者

Cozzolino, Davide, Rössler, Andreas, Thies, Justus, Nießner, Matthias, Verdoliva, Luisa

论文摘要

Deepfake伪造发现的一个主要挑战是,最先进的算法经过培训以检测特定的假方法。结果,这些方法显示出对不同类型的面部操作(例如,从面部交换到面部重演)的泛化。为此,我们介绍了ID-Reveal,这是一种新的方法,可以通过公制学习以及对抗性训练策略来学习时间的面部特征,具体介绍了一个人在说话时如何移动。优势在于,我们不需要任何假货的培训数据,而只需要对真实视频进行培训。此外,我们利用了高级语义功能,从而使后期处理的鲁棒性可稳健地扩展和破坏性形式。我们对几个公开可用的基准进行了彻底的实验分析。与最新技术相比,我们的方法改善了概括,并且对低质量视频通常会分布在社交网络上。特别是,我们在高压视频上的面部重演的准确性方面平均提高了15%以上。

A major challenge in DeepFake forgery detection is that state-of-the-art algorithms are mostly trained to detect a specific fake method. As a result, these approaches show poor generalization across different types of facial manipulations, e.g., from face swapping to facial reenactment. To this end, we introduce ID-Reveal, a new approach that learns temporal facial features, specific of how a person moves while talking, by means of metric learning coupled with an adversarial training strategy. The advantage is that we do not need any training data of fakes, but only train on real videos. Moreover, we utilize high-level semantic features, which enables robustness to widespread and disruptive forms of post-processing. We perform a thorough experimental analysis on several publicly available benchmarks. Compared to state of the art, our method improves generalization and is more robust to low-quality videos, that are usually spread over social networks. In particular, we obtain an average improvement of more than 15% in terms of accuracy for facial reenactment on high compressed videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源