论文标题
刺破表面上的几何填充曲线
Geometric filling curves on punctured surfaces
论文作者
论文摘要
本文是关于完整有限面积的双曲线表面上封闭的大地地质学和正通地理的一种定量密度。主要结果是最短的闭合地球封闭的长度和最短的双重截断的正通地点,在表面上的给定紧凑型设置上是$ \ varepsilon $ dense。
This paper is about a type of quantitative density of closed geodesics and orthogeodesics on complete finite-area hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic and the shortest doubly truncated orthogeodesic that are $\varepsilon$-dense on a given compact set on the surface.