论文标题
团队最佳控制耦合的主要少量子系统,并具有平均场共享
Team Optimal Control of Coupled Major-Minor Subsystems with Mean-Field Sharing
论文作者
论文摘要
在本文中,我们研究了团队对耦合的主要少量子系统具有均值分享的最佳控制。在这样的模型中,有一个主要子系统直接影响$ n $均质的小子系统的动态。但是,次要子系统仅通过其平均行为(间接)影响主要子系统的动力学以及彼此之间的动力学。在此模型中,主要子系统和次要子系统是任意耦合的,并且具有均值场共享信息结构。我们提出了一种两步的方法。在第一步中,我们将具有多种类型的次要子系统的平均场共享模型描述为Arabneydi和Mahajan的平均场共享模型,CDC 2014。在第二步中,我们使用第一步中获得的结果来构建动态编程分解,以确定主要和次要子系统的最佳策略。我们提供了一个具有数值结果的示例,以说明方法。
In this paper, we investigate team optimal control of coupled major-minor subsystems with mean-field sharing. In such a model, there is one major subsystem that directly influences the dynamics of $n$ homogeneous minor subsystems; however, the minor subsystems influence the dynamics of the major subsystem and each other only through their mean behaviour (indirectly). In this model, the major and the minor subsystems are arbitrarily coupled in the cost and have mean-field sharing information structure. We propose a two-step approach. In the first step, we describe a mean-field sharing model with multiple types of minor subsystems as a generalization of the mean-field sharing model of Arabneydi and Mahajan, CDC 2014. In the second step, we use the results obtained in the first step to construct a dynamic programming decomposition to identify optimal strategies for the major and the minor subsystems. We present an example with numerical results to illustrate the approach.