论文标题
通过磁重新连接在大型激光驱动等离子体中通过磁重新连接的非热电子和离子加速度
Nonthermal electron and ion acceleration by magnetic reconnection in large laser-driven plasmas
论文作者
论文摘要
磁重新连接是一种基本的等离子体过程,被认为在与空间物理和天体物理学中与爆炸现象相关的非热颗粒的生产中起关键作用。高能密度设施的实验开始探测高隆德奎斯特数量和大型系统尺寸的重新连接的微物理学。我们进行了粒子中的粒子(PIC)模拟,以探索与激光驱动的重新连接实验相关的参数的粒子加速度。我们研究了大型系统大小的颗粒加速度,这些大小可能很快就可以使用最有能力的激光驱动器(例如在国家点火设施)生产。在这些条件下,我们显示了达到多质体状态的可能性,在该状态下,浆液加速度成为主导。我们的结果表明,从\ textit {x}指向与浆液的合并和收缩相关的浆液为主导的加速度的过渡,这些加速度进一步扩展了电子粒子分布的幂律尾部的最大能量。我们还首次发现了驱动重新连接中非热离子加速度的系统大小依赖性的出现,在足够大的尺寸上,离子的磁化使它们可以由磁场包含并通过直接\ textIt {x}点加速度启用。对于可行的实验条件,电子和离子可以达到$ε_{max,e} / k_ {b} t_ {e}> 100 $和$ε_{max,i} / i} / k_ {b} t_ {b} t_ {i}> 1000 $的能量。使用二元蒙特卡洛库仑碰撞的PIC模拟,我们研究了碰撞对浆液形成和颗粒加速的影响。讨论了这些结果在理解空间物理和天体物理学中加速颗粒中的作用重新连接所起的作用的含义。
Magnetic reconnection is a fundamental plasma process that is thought to play a key role in the production of nonthermal particles associated with explosive phenomena in space physics and astrophysics. Experiments at high-energy-density facilities are starting to probe the microphysics of reconnection at high Lundquist numbers and large system sizes. We have performed particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We study particle acceleration in large system sizes that may be produced soon with the most energetic laser drivers available, such as at the National Ignition Facility. In these conditions, we show the possibility of reaching the multi-plasmoid regime, where plasmoid acceleration becomes dominant. Our results show the transition from \textit{X} point to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution for electrons. We also find for the first time a system-size-dependent emergence of nonthermal ion acceleration in driven reconnection, where the magnetization of ions at sufficiently large sizes allows them to be contained by the magnetic field and energized by direct \textit{X} point acceleration. For feasible experimental conditions, electrons and ions can attain energies of $ε_{max,e} / k_{B} T_{e} > 100$ and $ε_{max,i} / k_{B} T_{i} > 1000$. Using PIC simulations with binary Monte Carlo Coulomb collisions we study the impact of collisionality on plasmoid formation and particle acceleration. The implications of these results for understanding the role reconnection plays in accelerating particles in space physics and astrophysics are discussed.