论文标题
使用胸部X射线图像的多尺度注意力指导网络用于COVID-19诊断
Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-ray Images
论文作者
论文摘要
2019年冠状病毒病(Covid-19)是千年后最具破坏性的大流行之一,迫使世界应对健康危机。使用胸部X射线(CXR)图像自动肺部感染分类可以增强COVID-19时的诊断能力。但是,使用CXR图像从肺炎病例中对COVID进行分类是一项艰巨的任务,因为共享空间特征,高特征变化和病例之间的对比度多样性。此外,对于新出现的疾病,大量数据收集是不切实际的,这限制了数据口渴深度学习模型的性能。为了应对这些挑战,提出了具有软距离正则化(MAG-SD)的多尺度注意力引导的深层网络,以自动从肺炎CXR图像中对Covid-19进行分类。在MAG-SD中,MA-NET用于产生预测向量和多尺度特征图的注意。为了改善训练有素的模型的鲁棒性并减轻了训练数据的短缺,提出了注意力指导的增强以及柔软的距离正则化,这旨在产生有意义的增强和减少噪声。我们的多尺度注意模型在我们的肺炎CXR图像数据集上实现了更好的分类性能。对MAG-SD提出了丰富的实验,该实验证明了其在肺炎分类中的独特优势,而不是尖端模型。该代码可在https://github.com/jasonleeghub/mag-sd上找到。
Coronavirus disease 2019 (COVID-19) is one of the most destructive pandemic after millennium, forcing the world to tackle a health crisis. Automated lung infections classification using chest X-ray (CXR) images could strengthen diagnostic capability when handling COVID-19. However, classifying COVID-19 from pneumonia cases using CXR image is a difficult task because of shared spatial characteristics, high feature variation and contrast diversity between cases. Moreover, massive data collection is impractical for a newly emerged disease, which limited the performance of data thirsty deep learning models. To address these challenges, Multiscale Attention Guided deep network with Soft Distance regularization (MAG-SD) is proposed to automatically classify COVID-19 from pneumonia CXR images. In MAG-SD, MA-Net is used to produce prediction vector and attention from multiscale feature maps. To improve the robustness of trained model and relieve the shortage of training data, attention guided augmentations along with a soft distance regularization are posed, which aims at generating meaningful augmentations and reduce noise. Our multiscale attention model achieves better classification performance on our pneumonia CXR image dataset. Plentiful experiments are proposed for MAG-SD which demonstrates its unique advantage in pneumonia classification over cutting-edge models. The code is available at https://github.com/JasonLeeGHub/MAG-SD.