论文标题
$ n $ n $ body模拟碰撞星系的快速多极方法
Fast Multipole Methods for $N$-body Simulations of Collisional Star Systems
论文作者
论文摘要
直接的$ n $ - 星形簇模拟是准确但昂贵的,这很大程度上是由于众多$ \ MATHCAL {O}(n^2)$成对的力量计算。为了解决几百万年代的问题,有必要使用近似力求解器,例如树代码。在这项工作中,我们将基于树的,优化的快速多极方法(FMM)调整为碰撞$ n $ body问题。旋转加速翻译操作员和错误控制的单元格打开标准的使用会导致可以调整为任意准确性的代码。我们证明,当$ n> 10^4 $时,我们的代码Taichi可以与直接总和一样准确。这打开了对大型恒星群集进行大型$ n $,逐行的模拟的可能性,并将允许大量参数空间研究,这将需要数年的直接求和代码。使用一系列测试和理想化的模型,我们表明Taichi可以准确地对碰撞效应进行建模,例如动态摩擦和理想化簇的核心散射时间,从而与其他碰撞代码(例如Nbody6 ++ gpu或Petar)的基准有很强的一致。 Taichi与其他基于CPU的直接$ n $体代码相比,使用OpenMP和AVX并行化的Taichi更有效。随着对近距离相遇和二进制进化的处理未来的改进,我们清楚地证明了对碰撞恒星系统建模的优化FMM的潜力,为准确的大型球状簇,超级明星簇,甚至是银河系核开辟了大门。
Direct $N$-body simulations of star clusters are accurate but expensive, largely due to the numerous $\mathcal{O} (N^2)$ pairwise force calculations. To solve the post-million-body problem, it will be necessary to use approximate force solvers, such as tree codes. In this work, we adapt a tree-based, optimized Fast Multipole Method (FMM) to the collisional $N$-body problem. The use of a rotation-accelerated translation operator and an error-controlled cell opening criterion leads to a code that can be tuned to arbitrary accuracy. We demonstrate that our code, Taichi, can be as accurate as direct summation when $N> 10^4$. This opens up the possibility of performing large-$N$, star-by-star simulations of massive stellar clusters, and would permit large parameter space studies that would require years with the current generation of direct summation codes. Using a series of tests and idealized models, we show that Taichi can accurately model collisional effects, such as dynamical friction and the core-collapse time of idealized clusters, producing results in strong agreement with benchmarks from other collisional codes such as NBODY6++GPU or PeTar. Parallelized using OpenMP and AVX, Taichi is demonstrated to be more efficient than other CPU-based direct $N$-body codes for simulating large systems. With future improvements to the handling of close encounters and binary evolution, we clearly demonstrate the potential of an optimized FMM for the modeling of collisional stellar systems, opening the door to accurate simulations of massive globular clusters, super star clusters, and even galactic nuclei.