论文标题
广告中的颜色/运动学二元性$ _4 $
Color/Kinematics Duality in AdS$_4$
论文作者
论文摘要
在平坦的空间中,颜色/运动学二重性指出,扰动阳性振幅的幅度可以写成这样的方式,即运动分子遵守与它们的颜色因素相同的雅各比关系。这种显着的二元性意味着阳米尔的BCJ关系幅度幅度,并在重力振幅上构成了双复制。在本文中,我们找到了广告$ _4 $中杨米尔斯幅度的类似关系。特别是,我们表明,通过在动量空间中的Witten图计算出的4点杨米尔木幅度的运动学分子均具有通用的量规对称性,可用于强制执行从平坦的空间限制的运动学jacobi关系,而我们得出了在平面空间中降低标准空间限制的BCJ关系。我们使用紧凑型新表达式在ADS $ _4 $中的4点YANG-MILLS振幅及其动力学分子上使用紧凑的新表达式说明了这些结果。我们还阐明了动量空间中与3D共形相关器的关系,并在ADS $ _4 $中的双复制上推测了双复制幅度。
In flat space, the color/kinematics duality states that perturbative Yang-Mills amplitudes can be written in such a way that kinematic numerators obey the same Jacobi relations as their color factors. This remarkable duality implies BCJ relations for Yang-Mills amplitudes and underlies the double copy to gravitational amplitudes. In this paper, we find analogous relations for Yang-Mills amplitudes in AdS$_4$. In particular we show that the kinematic numerators of 4-point Yang-Mills amplitudes computed via Witten diagrams in momentum space enjoy a generalised gauge symmetry which can be used to enforce the kinematic Jacobi relation away from the flat space limit, and we derive deformed BCJ relations which reduce to the standard ones in the flat space limit. We illustrate these results using compact new expressions for 4-point Yang-Mills amplitudes in AdS$_4$ and their kinematic numerators in terms of spinors. We also spell out the relation to 3d conformal correlators in momentum space, and speculate on the double copy to graviton amplitudes in AdS$_4$.