论文标题

干预设计有效SIM2REAL转移

Intervention Design for Effective Sim2Real Transfer

论文作者

Mozifian, Melissa, Zhang, Amy, Pineau, Joelle, Meger, David

论文摘要

这项工作的目的是解决SIM2REAL设置的域随机化和数据增强的最新成功。我们通过因果推断,定位域随机化和数据增强的镜头来解释这一成功,这是对环境的干预措施,鼓励了不变特征。这种干预措施包括对奖励和动态没有影响的视觉扰动。这鼓励学习算法对这些类型的变化具有鲁棒性,并学会处理解决任务的真正因果机制。该连接导致两个关键发现:(1)对环境的扰动不必是现实的,而仅显示在现实世界中也会有所不同的差异,并且(2)使用明显的不变性诱导目标可以改善SIM2SIM和SIM2REAL单独的SIM2SIM和SIM2REAL的概括。我们通过从像素观测值中学习机器人臂触及任务的零拍传递来证明我们的方法的能力。

The goal of this work is to address the recent success of domain randomization and data augmentation for the sim2real setting. We explain this success through the lens of causal inference, positioning domain randomization and data augmentation as interventions on the environment which encourage invariance to irrelevant features. Such interventions include visual perturbations that have no effect on reward and dynamics. This encourages the learning algorithm to be robust to these types of variations and learn to attend to the true causal mechanisms for solving the task. This connection leads to two key findings: (1) perturbations to the environment do not have to be realistic, but merely show variation along dimensions that also vary in the real world, and (2) use of an explicit invariance-inducing objective improves generalization in sim2sim and sim2real transfer settings over just data augmentation or domain randomization alone. We demonstrate the capability of our method by performing zero-shot transfer of a robot arm reach task on a 7DoF Jaco arm learning from pixel observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源