论文标题

典型的$ \ ell_p \,$ - $ \,$ space收缩有非平凡的不变子空间吗?

Does a typical $\ell_p\,$-$\,$space contraction have a non-trivial invariant subspace?

论文作者

Grivaux, Sophie, Matheron, Étienne, Menet, Quentin

论文摘要

给定$ {\ Mathcal {b} _ {1}(x)} $上的抛光拓扑$τ$,$ x = \ ell_p $,$ 1 \ le p <\ yftty $或$ x = c_0 $ x = c_0 $上的所有收缩运算符的集合,我们证明与以下问题相关:是否典型$ t \ of ock ock of ofe: {\ Mathcal {B} _ {1}(x)} $在Baire类别中有一个非平凡的不变子空间?换句话说,是否存在密集的$g_δ$ set $ \ mathcal g \ subseteq({\ nathcal {b} _ {1} _ {1}(x)},τ)$,使每个$ t \ in \ nathcal in \ nathcal g $都有一个非无聊的不适式subspace吗?我们主要专注于强大的操作员拓扑和强大的$^*$操作员拓扑。

Given a Polish topology $τ$ on ${\mathcal{B}_{1}(X)}$, the set of all contraction operators on $X=\ell_p$, $1\le p<\infty$ or $X=c_0$, we prove several results related to the following question: does a typical $T\in {\mathcal{B}_{1}(X)}$ in the Baire Category sense has a non-trivial invariant subspace? In other words, is there a dense $G_δ$ set $\mathcal G\subseteq ({\mathcal{B}_{1}(X)},τ)$ such that every $T\in\mathcal G$ has a non-trivial invariant subspace? We mostly focus on the Strong Operator Topology and the Strong$^*$ Operator Topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源