论文标题
使用卷积块注意模块的光场视图合成
Light-field view synthesis using convolutional block attention module
论文作者
论文摘要
由于角空间的权衡,消费者光场(LF)摄像机的分辨率低或有限。为了减轻这一缺点,我们提出了一种基于学习的新方法,利用注意机制使用相机阵列中的一组稀疏的输入视图(即4个角度视图)综合了光场图像的新视图。在提出的方法中,我们将过程分为三个阶段,即立体 - 特征提取,差异和最终图像细化。我们在每个阶段使用三个顺序卷积神经网络。最终的自适应图像细化了残留的卷积块注意模块(CBAM)。注意模块有助于学习和关注图像的重要特征,因此在通道和空间维度中依次应用。实验结果表明该方法的鲁棒性。我们提出的网络的表现要优于最先进的基于学习的光场视图综合方法,这两个挑战性的现实世界数据集平均比0.5 dB。此外,我们提供一项消融研究来证实我们的发现。
Consumer light-field (LF) cameras suffer from a low or limited resolution because of the angular-spatial trade-off. To alleviate this drawback, we propose a novel learning-based approach utilizing attention mechanism to synthesize novel views of a light-field image using a sparse set of input views (i.e., 4 corner views) from a camera array. In the proposed method, we divide the process into three stages, stereo-feature extraction, disparity estimation, and final image refinement. We use three sequential convolutional neural networks for each stage. A residual convolutional block attention module (CBAM) is employed for final adaptive image refinement. Attention modules are helpful in learning and focusing more on the important features of the image and are thus sequentially applied in the channel and spatial dimensions. Experimental results show the robustness of the proposed method. Our proposed network outperforms the state-of-the-art learning-based light-field view synthesis methods on two challenging real-world datasets by 0.5 dB on average. Furthermore, we provide an ablation study to substantiate our findings.