论文标题

通过强大的功能提取了解深网的故障

Understanding Failures of Deep Networks via Robust Feature Extraction

论文作者

Singla, Sahil, Nushi, Besmira, Shah, Shital, Kamar, Ece, Horvitz, Eric

论文摘要

对测试集的总体分数报告的学习模型的传统评估指标不足以浮出特征和实例的重要且内容丰富的故障模式。我们介绍和研究一种旨在通过识别存在或不存在导致性能差的视觉属性来表征和解释失败的方法。为了与以前依赖众包标签的视觉属性的作品区别开来,我们利用了单独的健壮模型的表示来提取可解释的功能,然后利用这些功能来识别故障模式。我们进一步提出了一种可视化方法,旨在使人类了解此类特征中编码的含义,并测试特征的可理解性。对Imagenet数据集上方法的评估表明:(i)提出的工作流程可有效地发现重要的故障模式,(ii)可视化技术帮助人类了解提取的特征,并且(iii)提取的见解可以帮助工程师进行错误分析和调试。

Traditional evaluation metrics for learned models that report aggregate scores over a test set are insufficient for surfacing important and informative patterns of failure over features and instances. We introduce and study a method aimed at characterizing and explaining failures by identifying visual attributes whose presence or absence results in poor performance. In distinction to previous work that relies upon crowdsourced labels for visual attributes, we leverage the representation of a separate robust model to extract interpretable features and then harness these features to identify failure modes. We further propose a visualization method aimed at enabling humans to understand the meaning encoded in such features and we test the comprehensibility of the features. An evaluation of the methods on the ImageNet dataset demonstrates that: (i) the proposed workflow is effective for discovering important failure modes, (ii) the visualization techniques help humans to understand the extracted features, and (iii) the extracted insights can assist engineers with error analysis and debugging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源