论文标题

自动点:快速神经音量渲染的自动集成

AutoInt: Automatic Integration for Fast Neural Volume Rendering

论文作者

Lindell, David B., Martel, Julien N. P., Wetzstein, Gordon

论文摘要

数值集成是科学计算中的基础技术,并且是许多计算机视觉应用的核心。在这些应用中,最近提出了神经量渲染作为查看合成的新范式,可实现影像学图像质量。但是,使这些方法实用的基本障碍是由训练和推理期间渲染射线沿渲染射线所需的体积集成所造成的极端计算和内存要求。数百万射线需要数百个正向通过神经网络,以近似与蒙特卡洛采样的集成。在这里,我们提出了自动集成,这是使用基于坐标的神经网络为积分学习有效,封闭形式解决方案的新框架。对于培训,我们实例化了与网络导数相对应的计算图。该图安装在信号中以集成。优化后,我们重新组装图表以获得代表抗动力的网络。根据微积分的基本定理,这可以计算网络的两个评估中的任何确定积分。将这种方法应用于神经渲染,我们在渲染速度和图像质量之间提高了权衡:将渲染时间提高了10倍以上,而折衷的图像质量略有降低。

Numerical integration is a foundational technique in scientific computing and is at the core of many computer vision applications. Among these applications, neural volume rendering has recently been proposed as a new paradigm for view synthesis, achieving photorealistic image quality. However, a fundamental obstacle to making these methods practical is the extreme computational and memory requirements caused by the required volume integrations along the rendered rays during training and inference. Millions of rays, each requiring hundreds of forward passes through a neural network are needed to approximate those integrations with Monte Carlo sampling. Here, we propose automatic integration, a new framework for learning efficient, closed-form solutions to integrals using coordinate-based neural networks. For training, we instantiate the computational graph corresponding to the derivative of the network. The graph is fitted to the signal to integrate. After optimization, we reassemble the graph to obtain a network that represents the antiderivative. By the fundamental theorem of calculus, this enables the calculation of any definite integral in two evaluations of the network. Applying this approach to neural rendering, we improve a tradeoff between rendering speed and image quality: improving render times by greater than 10 times with a tradeoff of slightly reduced image quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源