论文标题

利用抽象含义表示知识基础问题回答

Leveraging Abstract Meaning Representation for Knowledge Base Question Answering

论文作者

Kapanipathi, Pavan, Abdelaziz, Ibrahim, Ravishankar, Srinivas, Roukos, Salim, Gray, Alexander, Astudillo, Ramon, Chang, Maria, Cornelio, Cristina, Dana, Saswati, Fokoue, Achille, Garg, Dinesh, Gliozzo, Alfio, Gurajada, Sairam, Karanam, Hima, Khan, Naweed, Khandelwal, Dinesh, Lee, Young-Suk, Li, Yunyao, Luus, Francois, Makondo, Ndivhuwo, Mihindukulasooriya, Nandana, Naseem, Tahira, Neelam, Sumit, Popa, Lucian, Reddy, Revanth, Riegel, Ryan, Rossiello, Gaetano, Sharma, Udit, Bhargav, G P Shrivatsa, Yu, Mo

论文摘要

知识基础问题回答(KBQA)是自然语言处理中的重要任务。现有方法面临重大挑战,包括复杂的问题理解,推理的必要性以及缺乏大型端到端培训数据集。在这项工作中,我们提出了一个模块化KBQA系统的神经符号问题回答(NSQA),该系统利用(1)抽象含义表示(AMR)解析了与任务无关的问题理解; (2)一种简单而有效的图形转换方法,将AMR解析转换为与KB一致的候选逻辑查询; (3)一种基于管道的方法,该方法集成了多个可重复使用的模块,这些模块是专门针对其单个任务的培训(语义解析器,实体andriations andRiatiationhip Linkers和neuro-Symbolic推理器),并且不需要端到端训练数据。 NSQA基于DBPEDIA(QALD-9和LC-QUAD1.0),在两个突出的KBQA数据集上实现了最先进的性能。此外,我们的分析强调,AMR是KBQA系统的强大工具。

Knowledge base question answering (KBQA)is an important task in Natural Language Processing. Existing approaches face significant challenges including complex question understanding, necessity for reasoning, and lack of large end-to-end training datasets. In this work, we propose Neuro-Symbolic Question Answering (NSQA), a modular KBQA system, that leverages (1) Abstract Meaning Representation (AMR) parses for task-independent question understanding; (2) a simple yet effective graph transformation approach to convert AMR parses into candidate logical queries that are aligned to the KB; (3) a pipeline-based approach which integrates multiple, reusable modules that are trained specifically for their individual tasks (semantic parser, entity andrelationship linkers, and neuro-symbolic reasoner) and do not require end-to-end training data. NSQA achieves state-of-the-art performance on two prominent KBQA datasets based on DBpedia (QALD-9 and LC-QuAD1.0). Furthermore, our analysis emphasizes that AMR is a powerful tool for KBQA systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源