论文标题

拓扑组合学中的次要定理

The graph minor theorem in topological combinatorics

论文作者

Miyata, Dane, Ramos, Eric

论文摘要

我们从\ parencite {miprora}的图次要类别的角度研究了拓扑组合学的各种自然结构,包括匹配的复合物以及其他图形复合物。我们证明,这些复合物在其同源性的所有图表中必须具有普遍界限的扭转。人们可能会认为这些结果是由Robertson和Seymour \ parencite {rsxx,rsxxiii}的代数版本产生的。

We study a variety of natural constructions from topological combinatorics, including matching complexes as well as other graph complexes, from the perspective of the graph minor category of \parencite{MiProRa}. We prove that these complexes must have universally bounded torsion in their homology across all graphs of bounded genus. One may think of these results as arising from an algebraic version of the graph minor theorem of Robertson and Seymour \parencite{RSXX,RSXXIII}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源