论文标题
近期量子计算机中的回收Qubit
Recycling qubits in near-term quantum computers
论文作者
论文摘要
量子计算机能够有效收缩统一张量网络,这项任务对于古典计算机来说可能仍然很困难。例如,基于矩阵产品状态或多尺度纠缠重新归一化ANSATZ(MERA)的网络可以在小型量子计算机上收缩以帮助模拟大量子系统。但是,如果没有选择性重置量子的能力,相关的空间成本可能是高昂的。在本文中,我们提出了一项协议,该协议可以在电路具有共同的卷积形式时单位重置量位,从而大大降低了在一般近期量子计算机上实现收缩算法的空间成本。该协议通过在不再使用的量子位上部分应用时间转换的量子电路来生成新的Qubit。在没有噪声的情况下,我们证明了这些量子位的子集的状态变为$ | 0 \ ldots 0 \ rangle $,在应用的门数中呈指数级的错误。我们还提供了数值证据,表明该协议在存在噪声的情况下起作用。我们还提供了一个数值证据,表明该协议在存在噪声的情况下起作用,并制定了严格遵循的噪声效能的条件。
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0\ldots 0\rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.