论文标题

kronecker theta函数和theta函数的分解定理i

Kronecker theta function and a decomposition theorem for theta functions I

论文作者

Liu, Zhi-Guo

论文摘要

Kronecker Theta功能是Jacobi Theta函数的商,这也是Ramanujan的$_1ψ_1$ Sumpation的特殊情况。使用kronecker theta函数作为构建块,我们证明了theta函数的分解定理。该分解定理是大量theta函数身份的共同来源。许多引人注目的theta函数身份,无论是经典还是新的,都是从该分解定理得出的。建立了一个新的theta功能的添加公式。由于Ramanujan,Weierstrass,Kiepert,Winquist和Shen等引起的椭圆形功能理论的几个已知结果。奇怪的是三角的身份。

The Kronecker theta function is a quotient of the Jacobi theta functions, which is also a special case of Ramanujan's $_1ψ_1$ summation. Using the Kronecker theta function as building blocks, we prove a decomposition theorem for theta functions. This decomposition theorem is the common source of a large number of theta function identities. Many striking theta function identities, both classical and new, are derived from this decomposition theorem with ease. A new addition formula for theta functions is established. Several known results in the theory of elliptic theta functions due to Ramanujan, Weierstrass, Kiepert, Winquist and Shen among others are revisited. A curious trigonometric identities is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源