论文标题

双支分支网络具有双重采样调制的骰子损失,用于从颜色底面图像中的硬渗出液分割

Dual-Branch Network with Dual-Sampling Modulated Dice Loss for Hard Exudate Segmentation from Colour Fundus Images

论文作者

Liu, Qing, Liu, Haotian, Liang, Yixiong

论文摘要

由于极端类不平衡和巨大的尺寸变化,颜色底面图像中硬渗出物的自动分割是一项挑战任务。本文旨在解决这些问题,并提出一个双分支网络,并具有双重采样调制的骰子损失。它由两个分支组成:大型硬渗出散发有偏见的学习分支和小的硬渗出偏见的学习分支。他们俩都分别负责自己的职责。此外,我们为训练提出了双重采样调制的骰子损失,以便我们提出的双支球网络能够分割不同尺寸的硬渗出量。详细说明,对于第一个分支,我们使用统一的采样器从预测的分割掩模中采样以骰子损失计算的样品,这会导致该分支自然而然地偏向于大型硬渗出液,因为骰子损失会产生更大的大型硬渗出液的误识别的成本,而不是小型硬渗出物。对于第二个分支,我们使用重新平衡的采样器来超过硬渗出像素和未示为背景像素以进行损失计算。这样,扩大了对小硬渗出液的错误识别的成本,这会使第二个分支中的参数非常适合小硬渗出物。考虑到大大的硬渗出物比小的硬渗出液更容易被正确识别,因此我们通过自适应调节两个分支的损失来提出一种易于缺乏的学习策略。我们在两个公共数据集上评估了我们提出的方法,结果表明我们的方法可以实现最先进的表现。

Automated segmentation of hard exudates in colour fundus images is a challenge task due to issues of extreme class imbalance and enormous size variation. This paper aims to tackle these issues and proposes a dual-branch network with dual-sampling modulated Dice loss. It consists of two branches: large hard exudate biased learning branch and small hard exudate biased learning branch. Both of them are responsible for their own duty separately. Furthermore, we propose a dual-sampling modulated Dice loss for the training such that our proposed dual-branch network is able to segment hard exudates in different sizes. In detail, for the first branch, we use a uniform sampler to sample pixels from predicted segmentation mask for Dice loss calculation, which leads to this branch naturally be biased in favour of large hard exudates as Dice loss generates larger cost on misidentification of large hard exudates than small hard exudates. For the second branch, we use a re-balanced sampler to oversample hard exudate pixels and undersample background pixels for loss calculation. In this way, cost on misidentification of small hard exudates is enlarged, which enforces the parameters in the second branch fit small hard exudates well. Considering that large hard exudates are much easier to be correctly identified than small hard exudates, we propose an easy-to-difficult learning strategy by adaptively modulating the losses of two branches. We evaluate our proposed method on two public datasets and results demonstrate that ours achieves state-of-the-art performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源