论文标题

统一本地和全球信息,以获取$ n $建议

Unify Local and Global Information for Top-$N$ Recommendation

论文作者

Liu, Xiaoming, Wu, Shaocong, Zhang, Zhaohan, Shen, Chao

论文摘要

知识图(kg)集成了复杂信息和包含丰富语义的知识图,被广泛视为增强推荐系统的侧面信息。但是,大多数现有基于KG的方法都集中于编码图中的结构信息,而无需利用用户项目交互数据中的协作信号,这对于理解用户偏好很重要。因此,这些模型所学的表示形式不足以表示建议环境中用户和项目的语义信息。两种数据的结合提供了解决此问题的好机会。为了解决这一研究差距,我们建议一个名为\ syname的新颖的二重奏表示学习框架,以融合本地信息(用户 - 项目交互数据)和全球信息(外部知识图),该信息由两个单独的子模型组成。一个人通过与知识感知的共同注意机制发现本地信息中的内部相关性来了解本地表示,而另一个人通过编码与关系意识到的注意力网络中的全球信息中的知识关联来了解全球表示。这两个子模型作为语义融合网络的一部分共同训练,以计算用户偏好,这在特殊情况下区分了两个子模型的贡献。我们在两个现实世界数据集上进行实验,评估表明KADM明显超过了最先进的方法。进一步的消融研究证实,在推荐任务上,二重奏体系结构的性能明显优于任何一个子模型。

Knowledge graph (KG), integrating complex information and containing rich semantics, is widely considered as side information to enhance the recommendation systems. However, most of the existing KG-based methods concentrate on encoding the structural information in the graph, without utilizing the collaborative signals in user-item interaction data, which are important for understanding user preferences. Therefore, the representations learned by these models are insufficient for representing semantic information of users and items in the recommendation environment. The combination of both kinds of data provides a good chance to solve this problem. To tackle this research gap, we propose a novel duet representation learning framework named \sysname to fuse local information (user-item interaction data) and global information (external knowledge graph) for the top-$N$ recommendation, which is composed of two separate sub-models. One learns the local representations by discovering the inner correlations in local information with a knowledge-aware co-attention mechanism, and another learns the global representations by encoding the knowledge associations in global information with a relation-aware attention network. The two sub-models are jointly trained as part of the semantic fusion network to compute the user preferences, which discriminates the contribution of the two sub-models under the special context. We conduct experiments on two real-world datasets, and the evaluations show that KADM significantly outperforms state-of-art methods. Further ablation studies confirm that the duet architecture performs significantly better than either sub-model on the recommendation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源