论文标题
$ \ mathbb f_q $ - 线性多项式给出的Artin-Schreier曲线
Artin-Schreier curves given by $\mathbb F_q$-linearized polynomials
论文作者
论文摘要
令$ \ mathbb f_q $为带有$ q $元素的有限字段,其中$ q $是奇数prime $ p $的力量。在本文中,我们将循环矩阵和二次形式与artin -schreier曲线相关联$ y^q -y = x \ cdot f(x) - λ,$,其中$ f(x)$是$ \ mathbb f_q $ learearized tolearized多项式和$λ\ in \ mathbb f_q $。我们的结果提供了该曲线的仿射合理点数的表征,$ \ mathbb f_q $,$ \ gcd(q,r)= 1 $。在情况下,在$ f(x)= x^{q^i} -x $中,我们完整地描述了Legendre符号和二次字符的仿射理性点数。
Let $\mathbb F_q$ be a finite field with $q$ elements, where $q$ is a power of an odd prime $p$. In this paper we associate circulant matrices and quadratic forms with the Artin-Schreier curve $y^q - y= x \cdot F(x) - λ,$ where $F(x)$ is a $\mathbb F_q$-linearized polynomial and $λ\in \mathbb F_q$. Our results provide a characterization of the number of affine rational points of this curve in the extension $\mathbb F_{q^r}$ of $\mathbb F_q$, for $\gcd(q,r)=1$. In the case $F(x) = x^{q^i}-x$ we give a complete description of the number of affine rational points in terms of Legendre symbols and quadratic characters.