论文标题

用于文档图像二进制的无监督神经领域的适应

Unsupervised Neural Domain Adaptation for Document Image Binarization

论文作者

Castellanos, Francisco J., Gallego, Antonio-Javier, Calvo-Zaragoza, Jorge

论文摘要

二进制化是一项众所周知的图像处理任务,其目的是将图像的前景与背景区分开。它有用的众多任务之一是预处理文档图像以确定相关信息,例如文本或符号。各种各样的文档类型,字母和格式使二进制化具有挑战性。从经典的手动调整方法到基于机器学习的最新方法,有多种建议可以解决此问题。后一种技术需要大量的培训数据才能获得良好的结果;但是,在实践中,标记每个现有文档集合的一部分是不可行的。这是监督学习中的一个常见问题,可以使用所谓的域适应(DA)技术来解决。这些技术利用了一个域中学习的知识,可用于标记数据,将其应用于没有标记数据的其他域。本文提出了一种结合神经网络和DA的方法,以进行无监督的文档二进制化。但是,当源和目标域都非常相似时,这种适应可能是有害的。因此,我们的方法首先以创新的方式衡量域之间的相似性,以确定应用适应过程是否适合。在实验中报告的结果在评估五个不同域之间最多20可能的组合时,表明我们的建议成功处理了新文档域的二进制,而无需标记的数据。

Binarization is a well-known image processing task, whose objective is to separate the foreground of an image from the background. One of the many tasks for which it is useful is that of preprocessing document images in order to identify relevant information, such as text or symbols. The wide variety of document types, alphabets, and formats makes binarization challenging. There are multiple proposals with which to solve this problem, from classical manually-adjusted methods, to more recent approaches based on machine learning. The latter techniques require a large amount of training data in order to obtain good results; however, labeling a portion of each existing collection of documents is not feasible in practice. This is a common problem in supervised learning, which can be addressed by using the so-called Domain Adaptation (DA) techniques. These techniques take advantage of the knowledge learned in one domain, for which labeled data are available, to apply it to other domains for which there are no labeled data. This paper proposes a method that combines neural networks and DA in order to carry out unsupervised document binarization. However, when both the source and target domains are very similar, this adaptation could be detrimental. Our methodology, therefore, first measures the similarity between domains in an innovative manner in order to determine whether or not it is appropriate to apply the adaptation process. The results reported in the experimentation, when evaluating up to 20 possible combinations among five different domains, show that our proposal successfully deals with the binarization of new document domains without the need for labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源