论文标题
maad-face:面部图像的大量注释属性数据集
MAAD-Face: A Massively Annotated Attribute Dataset for Face Images
论文作者
论文摘要
软性生物测量法在Face Biomertic和相关领域中起着重要作用,因为这些可能会导致偏见,威胁用户的隐私或对商业方面有价值。当前的面部数据库是专门用于开发面部识别应用程序的。因此,这些数据库包含大量面部图像,但缺乏属性注释的数量和整体注释正确性。在这项工作中,我们提出了Maadface,这是一个新的面部注释数据库,其特征是其大量的高质量属性注释。 Maadface建立在VGGFACE2数据库上,因此由超过9K个个人的面孔组成。使用新颖的注释转移纸线,该纸条允许从多个源数据集到目标数据库的精确标签转移,MAAD-FACE由47个不同二进制属性的12390万个属性注释组成。因此,它提供的属性标签是Celeba和LFW的15倍和137倍。我们对三位人类评估人员的注释质量的调查表明,MAAD-FACE注释比现有数据库的优越性。此外,我们利用MAAD-FACE的大量高质量注释来研究软性生物测定法的生存能力,以提供有关哪些属性支持真正和冒名顶替决策的见解。 MAAD-FACE注释数据集可公开使用。
Soft-biometrics play an important role in face biometrics and related fields since these might lead to biased performances, threatens the user's privacy, or are valuable for commercial aspects. Current face databases are specifically constructed for the development of face recognition applications. Consequently, these databases contain large amount of face images but lack in the number of attribute annotations and the overall annotation correctness. In this work, we propose MAADFace, a new face annotations database that is characterized by the large number of its high-quality attribute annotations. MAADFace is build on the VGGFace2 database and thus, consists of 3.3M faces of over 9k individuals. Using a novel annotation transfer-pipeline that allows an accurate label-transfer from multiple source-datasets to a target-dataset, MAAD-Face consists of 123.9M attribute annotations of 47 different binary attributes. Consequently, it provides 15 and 137 times more attribute labels than CelebA and LFW. Our investigation on the annotation quality by three human evaluators demonstrated the superiority of the MAAD-Face annotations over existing databases. Additionally, we make use of the large amount of high-quality annotations from MAAD-Face to study the viability of soft-biometrics for recognition, providing insights about which attributes support genuine and imposter decisions. The MAAD-Face annotations dataset is publicly available.