论文标题
使用配置文件可扩展数据发现
Scalable Data Discovery Using Profiles
论文作者
论文摘要
我们研究了大规模发现可加入数据集的问题。这就是如何在可以连接的大量独立,异构数据集中自动发现对属性对的。精确(例如,基于不同的值)和基于哈希的(例如,基于对局部敏感的哈希)技术需要对整个数据集进行索引,这是无法大规模的。为了克服这个问题,我们从学习的角度解决了问题,以依靠资料。这些是简洁的表示,可以捕获模式的基本特征和数据集的数据值,可以以分布式和并行的方式有效地提取它们。然后比较配置文件,以预测来自不同数据集的一对属性之间的联接操作质量。与最先进的相反,我们定义了一种新颖的联接质量概念,该概念依赖于候选属性之间的遏制和心脏比例的度量。我们在一个名为NextIAJD的系统中实施了我们的方法,并提出了广泛的实验,以显示我们方法的预测性能和计算效率。我们的实验表明,NextiaJD获得了与基于哈希的方法相似的预测性能,但是我们能够扩展到大量的数据。另外,NextiaJD产生的假阳性量少得多,这是大规模的理想功能。
We study the problem of discovering joinable datasets at scale. This is, how to automatically discover pairs of attributes in a massive collection of independent, heterogeneous datasets that can be joined. Exact (e.g., based on distinct values) and hash-based (e.g., based on locality-sensitive hashing) techniques require indexing the entire dataset, which is unattainable at scale. To overcome this issue, we approach the problem from a learning perspective relying on profiles. These are succinct representations that capture the underlying characteristics of the schemata and data values of datasets, which can be efficiently extracted in a distributed and parallel fashion. Profiles are then compared, to predict the quality of a join operation among a pair of attributes from different datasets. In contrast to the state-of-the-art, we define a novel notion of join quality that relies on a metric considering both the containment and cardinality proportions between candidate attributes. We implement our approach in a system called NextiaJD, and present extensive experiments to show the predictive performance and computational efficiency of our method. Our experiments show that NextiaJD obtains similar predictive performance to that of hash-based methods, yet we are able to scale-up to larger volumes of data. Also, NextiaJD generates a considerably less amount of false positives, which is a desirable feature at scale.