论文标题
FFD:快速功能检测器
FFD: Fast Feature Detector
论文作者
论文摘要
尺度不变性,良好的定位和噪声和扭曲的鲁棒性是局部特征检测器应具有的主要特性。大多数现有的本地功能探测器都会发现过多的不稳定特征点,以增加要匹配的关键点的数量以及匹配步骤的计算时间。在本文中,我们表明在特定的尺度空间域中存在鲁棒和准确的关键点。为此,我们首先将叠加问题提出为数学模型,然后得出封闭形式的解决方案以进行多尺度分析。该模型是通过连续尺度空间结构域中的高斯(DOG)内核制定的,并且证明将尺度空间金字塔的模糊比例和平滑度设置为2和0.627,从而促进了可靠关键点的检测。为了适用于提出的模型离散图像,我们使用不可测量的小波变换和立方样条函数将其离散化。从理论上讲,我们方法的复杂性小于流行基线规模不变特征变换(SIFT)的复杂性。广泛的实验结果表明,在准确性和计算时间内,所提出的特征检测器比现有的代表性手工制作和基于学习的技术的优越性。可以在〜{\ url {https://github.com/mogvision/ffd}}上找到代码和补充材料。
Scale-invariance, good localization and robustness to noise and distortions are the main properties that a local feature detector should possess. Most existing local feature detectors find excessive unstable feature points that increase the number of keypoints to be matched and the computational time of the matching step. In this paper, we show that robust and accurate keypoints exist in the specific scale-space domain. To this end, we first formulate the superimposition problem into a mathematical model and then derive a closed-form solution for multiscale analysis. The model is formulated via difference-of-Gaussian (DoG) kernels in the continuous scale-space domain, and it is proved that setting the scale-space pyramid's blurring ratio and smoothness to 2 and 0.627, respectively, facilitates the detection of reliable keypoints. For the applicability of the proposed model to discrete images, we discretize it using the undecimated wavelet transform and the cubic spline function. Theoretically, the complexity of our method is less than 5\% of that of the popular baseline Scale Invariant Feature Transform (SIFT). Extensive experimental results show the superiority of the proposed feature detector over the existing representative hand-crafted and learning-based techniques in accuracy and computational time. The code and supplementary materials can be found at~{\url{https://github.com/mogvision/FFD}}.