论文标题

从重力波数据中推断核 - 循环超新星中的proto-neutron star特性的推断

Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae

论文作者

Bizouard, Marie-Anne, Maturana-Russel, Patricio, Torres-Forné, Alejandro, Obergaulinger, Martin, Cerdá-Durán, Pablo, Christensen, Nelson, Font, José A., Meyer, Renate

论文摘要

最终从核心偏离超新星(CCSN)中检测重力波将有助于提高我们对大型恒星爆炸机制的当前理解。由于所涉及的物质的非线性动力学以及大量现象的自由度,反弹后引力波信号的随机性质使源参数推断问题变得非常具有挑战性。在本文中,我们朝着该目标迈出了一步,并提出了一种参数估计方法,该方法基于与原始恒星(PNS)振荡相关的重力波。 CCSN的数值模拟表明,浮力驱动的G模型是重力波信号的很大一部分,其时频演化与通过普遍关系的紧凑型残留物的物理特性有关,如[1]中所示。我们使用一组1D CCSN模拟来构建一个模型,该模型将PNS性质的演变与主要的G模式的频率相关联,该模型使用我们为研究开发的新算法从引力波数据中提取。该模型用于推断质量和PN半径的组合的时间演变。该方法的性能是使用2D CCSN波形的模拟估计的,涵盖了11至40个太阳能质量和不同状态方程的祖细胞质量范围。考虑到嵌入高斯重力波检测器噪声中的信号,我们表明可以使用高级LIGO和高级处女座数据在设计敏感性下推断出银河源的PNS性质。第三代探测器(例如爱因斯坦望远镜和宇宙资源管理器)将允许测试$ {\ cal o}的距离(100 \,{\ rm kpc})$。

The eventual detection of gravitational waves from core-collapse supernovae (CCSN) will help improve our current understanding of the explosion mechanism of massive stars. The stochastic nature of the late post-bounce gravitational wave signal due to the non-linear dynamics of the matter involved and the large number of degrees of freedom of the phenomenon make the source parameter inference problem very challenging. In this paper we take a step towards that goal and present a parameter estimation approach which is based on the gravitational waves associated with oscillations of proto-neutron stars (PNS). Numerical simulations of CCSN have shown that buoyancy-driven g-modes are responsible for a significant fraction of the gravitational wave signal and their time-frequency evolution is linked to the physical properties of the compact remnant through universal relations, as demonstrated in [1]. We use a set of 1D CCSN simulations to build a model that relates the evolution of the PNS properties with the frequency of the dominant g-mode, which is extracted from the gravitational-wave data using a new algorithm we have developed for our study. The model is used to infer the time evolution of a combination of the mass and the radius of the PNS. The performance of the method is estimated employing simulations of 2D CCSN waveforms covering a progenitor mass range between 11 and 40 solar masses and different equations of state. Considering signals embedded in Gaussian gravitational wave detector noise, we show that it is possible to infer PNS properties for a galactic source using Advanced LIGO and Advanced Virgo data at design sensitivities. Third generation detectors such as Einstein Telescope and Cosmic Explorer will allow to test distances of ${\cal O}(100\, {\rm kpc})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源