论文标题

Mg $ _2 $ _2 $ _4 $ WADSLEYITE的有效粘塑性行为的多尺度建模:桥接原子和polycrystal量表

Multiscale modeling of the effective viscoplastic behavior of Mg$_2$SiO$_4$ wadsleyite: Bridging atomic and polycrystal scales

论文作者

Castelnau, O., Derrien, K., Ritterbex, S, Carrez, P., Cordier, P., Moulinec, H.

论文摘要

多晶Mg $ _2 $ _4 $ wadsleyite骨料是地球地幔过渡区的主要高压阶段(深度:410-520 km)的主要高压阶段,是通过正确弥合多个规模过渡模型获得的。在与脱位核心结构相对应的非常细的纳米尺度下,基于PEIERLS-NABARO-GALERKIL金模型,对与实验室实验条件,高压和广泛温度相关的应变率进行了热活化塑料滑动的行为。从Orowan的方程中推导相应的单滑剪切应力和相关的本构方程,以描述最简单的滑移系统的晶粒尺度上的平均粘膜塑性行为。这些数据已在两个谷物聚晶尺度过渡模型中实现,这是一个平均场(最近完全优化的二阶粘膜粘膜自符合方案[44]),允许快速评估多晶体聚集体的有效粘度,并允许基于全晶地的定位和量度(FFT)(FFT [45] [45] [45]] [45] [45] [33])[45] [45] [45] [33])晶粒内滑动系统的异质激活。在与原位条件相关的压力和温度下进行了计算。结果与在实验室实验的典型应变率上进行的可用机械测试非常吻合。

The viscoplastic behavior of polycrystalline Mg$_2$SiO$_4$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410 -- 520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the disloca-tion core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls-Nabarro-Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan's equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [44]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates , and a full-field (FFT based [45] [33]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源