论文标题

通过鉴别器梯度流完善深层生成模型

Refining Deep Generative Models via Discriminator Gradient Flow

论文作者

Ansari, Abdul Fatir, Ang, Ming Liang, Soh, Harold

论文摘要

近年来,深层生成建模的进步令人印象深刻,以至于看到模拟样本(例如,图像)与现实世界中的数据非常相似。但是,对于任何给定模型来说,发电质量通常不一致,并且在样品之间可能会差异。我们介绍了鉴别梯度流(DGFLOW),这是一种新技术,通过熵调查的F-Diverence在真实数据和生成的数据分布之间的熵流量来改进样品。梯度流采用非线性fokker-Plank方程的形式,可以通过等效的McKean-Vlasov过程轻松模拟该方程。通过完善下样品,我们的技术避免了以前方法(DRS&MH-GAN)使用的浪费样本排斥。与专注于特定GAN变体的现有作品相比,我们表明我们的改进方法可以应用于具有矢量值评论家甚至其他深层生成模型(例如VAES)和归一化流量的GAN。多个合成,图像和文本数据集的经验结果表明,DGFLOF会导致各种生成模型的生成样品质量的显着提高,从而胜过最新的鉴别器最佳传输(DOT)和鉴别剂驱动的潜伏采样(DDLS)方法。

Deep generative modeling has seen impressive advances in recent years, to the point where it is now commonplace to see simulated samples (e.g., images) that closely resemble real-world data. However, generation quality is generally inconsistent for any given model and can vary dramatically between samples. We introduce Discriminator Gradient flow (DGflow), a new technique that improves generated samples via the gradient flow of entropy-regularized f-divergences between the real and the generated data distributions. The gradient flow takes the form of a non-linear Fokker-Plank equation, which can be easily simulated by sampling from the equivalent McKean-Vlasov process. By refining inferior samples, our technique avoids wasteful sample rejection used by previous methods (DRS & MH-GAN). Compared to existing works that focus on specific GAN variants, we show our refinement approach can be applied to GANs with vector-valued critics and even other deep generative models such as VAEs and Normalizing Flows. Empirical results on multiple synthetic, image, and text datasets demonstrate that DGflow leads to significant improvement in the quality of generated samples for a variety of generative models, outperforming the state-of-the-art Discriminator Optimal Transport (DOT) and Discriminator Driven Latent Sampling (DDLS) methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源