论文标题

关于迪克曼分布的概率模型的强,几乎确定的局部限制定理

On strong and almost sure local limit theorems for a probabilistic model of the Dickman distribution

论文作者

de la Bretèche, Régis, Tenenbaum, Gérald

论文摘要

令$ \ {z_k \} _ {k \ geqslant 1} $表示由$ {\ mathbb p}定义的独立bernoulli随机变量序列$ t_n:= \ sum_ {1 \ leqslant k \ leqslant n} kz_k $。然后知道,$ t_n/n $薄弱地收敛到真正的随机变量$ d $,密度与迪克曼函数成正比,由延迟差异方程$ \ u \ varrho'(u)+\ varrho(u-varrho(u-1)= 0 $(u->)= 0 $(u-> 1)$,其初始条件$ \ varrho(u) 1)$。为了改善早期工作,我们提出了与相应局部且几乎肯定限制定理的剩余渐近公式。

Let $\{Z_k\}_{k\geqslant 1}$ denote a sequence of independent Bernoulli random variables defined by ${\mathbb P}(Z_k=1)=1/k=1-{\mathbb P}(Z_k=0)$ $(k\geqslant 1)$ and put $T_n:=\sum_{1\leqslant k\leqslant n}kZ_k$. It is then known that $T_n/n$ converges weakly to a real random variable $D$ with density proportional to the Dickman function, defined by the delay-differential equation $u\varrho'(u)+\varrho(u-1)=0$ $(u>1)$ with initial condition $\varrho(u)=1$ $(0\leqslant u\leqslant 1)$. Improving on earlier work, we propose asymptotic formulae with remainders for the corresponding local and almost sure limit theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源