论文标题
一像素攻击欺骗了对癌症的计算机辅助诊断
One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer
论文作者
论文摘要
计算机视觉和机器学习可用于自动化癌症诊断和检测中的各种任务。如果攻击者可以操纵自动处理,则结果可能是毁灭性的,在最坏的情况下会导致错误的诊断和治疗。在这项研究中,目标是在现实生活中使用真实病理学数据集TUPAC16在现实生活中证明使用单像素攻击的方法,该数据集由数字化的全片图像组成。我们使用对抗图像对IBM Codait的最大乳腺癌检测器进行攻击。这些对抗性示例是使用差分进化来对数据集中图像进行单像素修改的。结果表明,通过逆转自动诊断结果,对整个幻灯片图像进行了较小的单像素修饰会影响诊断。攻击从网络安全角度构成了威胁:一个像素方法可以由动机攻击者用作攻击向量。
Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAIT's MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a minor one-pixel modification of a whole slide image under analysis can affect the diagnosis by reversing the automatic diagnosis result. The attack poses a threat from the cyber security perspective: the one-pixel method can be used as an attack vector by a motivated attacker.