论文标题
在紧凑的Hermitian歧管上变形的赫米尔山阳米尔斯方程式
Deformed Hermitian-Yang-Mills Equation on Compact Hermitian Manifolds
论文作者
论文摘要
令$(x,ω)$为紧凑的连接的Hermitian dimension $ n $。我们考虑了Bott-Chern的共同体,并在H^{1,1} _ {\ text {bc}}}}(x; x; \ Mathbb {r})$中让$ [χ] \。我们研究了变形的Hermitian-yang-mills方程,这是以下非线性椭圆方程$ \ sum_ {i} \ arctan(λ_i)= h(x)$,其中$λ_i$是$χ$的特征值。
Let $(X, ω)$ be a compact connected Hermitian manifold of dimension $n$. We consider the Bott-Chern cohomology and let $[χ] \in H^{1,1}_{\text{BC}}(X; \mathbb{R})$. We study the deformed Hermitian-Yang-Mills equation, which is the following nonlinear elliptic equation $\sum_{i} \arctan (λ_i) = h(x)$, where $λ_i$ are the eigenvalues of $χ$ with respect to $ω$.