论文标题
受访者驱动的采样数据的一般回归方法
General Regression Methods for Respondent-Driven Sampling Data
论文作者
论文摘要
受访者驱动的抽样(RDS)是链接追踪抽样技术的一种变体,旨在通过利用个人的社会关系来招募难以触及的人群。因此,RDS样品具有图形组件,该图形组件代表了一个部分观察到的未知结构网络。此外,通常观察同性恋,或与具有相似特征的个人建立联系的趋势。当前,缺乏针对RDS的多元建模策略来解决同质协变量以及网络内观测之间的依赖性的原则指导。在这项工作中,我们提出了一种使用RDS数据的通用回归技术的方法。这用于研究同性恋,双性恋和其他与男性发生性关系的男同性恋者对艾滋病毒治疗乐观的社会人口统计学预测因子(关于抗逆转录病毒疗法的价值(关于抗逆转录病毒疗法的价值)。
Respondent-Driven Sampling (RDS) is a variant of link-tracing sampling techniques that aim to recruit hard-to-reach populations by leveraging individuals' social relationships. As such, an RDS sample has a graphical component which represents a partially observed network of unknown structure. Moreover, it is common to observe homophily, or the tendency to form connections with individuals who share similar traits. Currently, there is a lack of principled guidance on multivariate modeling strategies for RDS to address homophilic covariates and the dependence between observations within the network. In this work, we propose a methodology for general regression techniques using RDS data. This is used to study the socio-demographic predictors of HIV treatment optimism (about the value of antiretroviral therapy) among gay, bisexual and other men who have sex with men, recruited into an RDS study in Montreal, Canada.