论文标题

非交通性高维Schwarzschild-tangherlini黑洞时空的标量场准标准模式和涂抹物质的源

Scalar field quasinormal modes of noncommutative high dimensional Schwarzschild-Tangherlini black hole spacetime with smeared matter sources

论文作者

Yan, Zening, Wu, Chen, Guo, Wenjun

论文摘要

我们研究了本文中非交通$ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $的无量子标量准模式(QNM)。通过使用Gentzel-Kramers-Brillouin(WKB)近似方法,渐近迭代方法(AIM)和倒潜在方法(IPM)方法,我们通过改变质量标量QNM频率的详细分析,通过改变一般的涂片分布和允许的特征参数($ K $和$ que $θ$),以相对于相应的污点。发现高阶WKB近似的不相关存在于QNMS频率周围的QNMS频率,围绕非交通型$ D $ d $ d $维的SchwarzsChild黑洞。我们得出的结论是,第三WKB结果应该比高阶WKB方法更可靠,因为我们的数值结果也通过AIM方法和IPM方法验证。在$ 4 \ leq d \ leq7 $的尺寸范围内,标量QNMS的函数(非交换参数$θ$,涂片的物质分布参数$ k $,多极号$ l $和主节点编号$ n $)。此外,我们研究了标量场在非交通性高维Schwarzschild-Tangherlini黑洞背景下的动态演变。

We investigate the massless scalar quasinormal modes (QNMs) of the noncommutative $D$-dimensional Schwarzschild-Tangherlini black hole spacetime in this paper. By using the Wentzel-Kramers-Brillouin (WKB) approximation method, the asymptotic iterative method (AIM) and the inverted potential method (IPM) method, we made a detail analysis of the massless scalar QNM frequencies by varying the general smeared matter distribution and the allowable characteristic parameters ($k$ and $θ$) corresponding to different dimensions. It is found that the nonconvergence of the high order WKB approximation exists in the QNMs frequencies of scalar perturbation around the noncommutative $D$-dimensional Schwarzschild black holes. We conclude that the 3rd WKB result should be more reliable than those of the high order WKB method since our numerical results are also verified by the AIM method and the IPM method. In the dimensional range of $4\leq D \leq7$, the scalar QNMs as a function of the different papameters (the noncommutative parameter $θ$, the smeared matter distribution parameter $k$, the multipole number $l$ and the main node number $n$) are obtained. Moreover, we study the dynamical evolution of a scalar field in the background of the noncommutative high dimensional Schwarzschild-Tangherlini black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源