论文标题
一种用于自动表面检查旋转对称组件的缝线算法
A Stitching Algorithm for Automated Surface Inspection of Rotationally Symmetric Components
论文作者
论文摘要
本文提供了一种新颖的方法来缝制旋转对称零件的表面图像。它提出了一种使用基于功能的缝线方法的过程管道来创建视频文件中的无失真和真实的图像。因此,开发的过程可以启用例如条件监视,而无需查看许多单独的图像。出于验证目的,将使用磨损的球螺钉螺旋的具体示例在论文中进行证明。开发的算法旨在再现线扫描相机系统的功能原理,从而通过基于功能的方法代替了物理测量系统。为了评估缝线算法,使用了指标,其中一些仅在这项工作中开发,或者已经通过已经使用的测试程序进行了补充。开发算法的适用性不仅限于机床主轴。取而代之的是,开发的方法允许使用各种旋转对称组件进行表面检查的一般方法,因此可以在各种工业应用中使用。可以轻松实现基于深度学习的检测算法,以生成一条完整的管道,以在旋转对称零件上进行故障检测和状态监测。
This paper provides a novel approach to stitching surface images of rotationally symmetric parts. It presents a process pipeline that uses a feature-based stitching approach to create a distortion-free and true-to-life image from a video file. The developed process thus enables, for example, condition monitoring without having to view many individual images. For validation purposes, this will be demonstrated in the paper using the concrete example of a worn ball screw drive spindle. The developed algorithm aims at reproducing the functional principle of a line scan camera system, whereby the physical measuring systems are replaced by a feature-based approach. For evaluation of the stitching algorithms, metrics are used, some of which have only been developed in this work or have been supplemented by test procedures already in use. The applicability of the developed algorithm is not only limited to machine tool spindles. Instead, the developed method allows a general approach to the surface inspection of various rotationally symmetric components and can therefore be used in a variety of industrial applications. Deep-learning-based detection Algorithms can easily be implemented to generate a complete pipeline for failure detection and condition monitoring on rotationally symmetric parts.