论文标题

双像素探索:同时深度估计和图像恢复

Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration

论文作者

Pan, Liyuan, Chowdhury, Shah, Hartley, Richard, Liu, Miaomiao, Zhang, Hongguang, Li, Hongdong

论文摘要

双像素(DP)硬件可以通过将每个像素分成两半并在单个快照中创建图像对来起作用。通过将DP对视为立体声对,有几项作品估计深度/反向深度。但是,双像素差异仅发生在散焦模糊的图像区域中。 DP对中的沉重散焦模糊会影响基于匹配的深度估计方法的性能。我们没有盲目消除模糊效果,而是研究将模糊和深度信息链接的DP对的形成。在本文中,我们提出了一个数学DP模型,该模型可以受益于模糊的深度估计。这些探索激励我们提出端到端DDDNET(基于DP的深度和DeBlur网络),以共同估计深度并恢复图像。此外,我们定义了重生损失,这反映了DP图像形成过程与深度信息的关系,以使我们的训练深度估算正常。为了满足大量学习数据的要求,我们提出了第一个DP Image Simulator,该模拟器使我们可以从任何现有的RGBD数据集中使用DP对创建数据集。作为副作用,我们收集了一个真正的数据集,以进行进一步研究。对合成数据集和真实数据集进行了广泛的实验评估表明,与最新方法相比,我们的方法实现了竞争性能。

The dual-pixel (DP) hardware works by splitting each pixel in half and creating an image pair in a single snapshot. Several works estimate depth/inverse depth by treating the DP pair as a stereo pair. However, dual-pixel disparity only occurs in image regions with the defocus blur. The heavy defocus blur in DP pairs affects the performance of matching-based depth estimation approaches. Instead of removing the blur effect blindly, we study the formation of the DP pair which links the blur and the depth information. In this paper, we propose a mathematical DP model which can benefit depth estimation by the blur. These explorations motivate us to propose an end-to-end DDDNet (DP-based Depth and Deblur Network) to jointly estimate the depth and restore the image. Moreover, we define a reblur loss, which reflects the relationship of the DP image formation process with depth information, to regularise our depth estimate in training. To meet the requirement of a large amount of data for learning, we propose the first DP image simulator which allows us to create datasets with DP pairs from any existing RGBD dataset. As a side contribution, we collect a real dataset for further research. Extensive experimental evaluation on both synthetic and real datasets shows that our approach achieves competitive performance compared to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源