论文标题
延迟和能量限制的异步移动边缘学习的任务分配
Task Allocation for Asynchronous Mobile Edge Learning with Delay and Energy Constraints
论文作者
论文摘要
本文通过设计一种最佳任务分配方案来扩展“移动边缘学习(MEL)”的范式,以跨越企业边缘节点的异步方式训练机器学习模型,或者通过资源受限的无线边缘网络连接的学习者。进行了优化,以使分配给每个学习者的任务的一部分在给定的全局延迟约束和局部最大能耗限制内完成。消耗的时间和能量与学习者的异质沟通和计算能力直接相关;即提出的模型是异质性意识(HA)。由于最终的优化是NP - 固定四限制的整数线性程序(QCILP),因此提出了一种两步建议和突出的解决方案(SAI)解决方案,基于使用松弛同步问题的解决方案,以获取异步问题的解决方案。将提出的HA异步(HA-ASYN)方法与HA同步(HA-Sync)方案进行了比较,而异质性不知道(HU)相等的批量分配方案。来自20个学习者的系统的结果,测试了各种完成时间和能耗限制,表明所提出的HA-ASYN方法比HU同步/异步(HU-Sync/Asyn)方法更好地效果更好,并且与HA-Sync方案相比,可以提供最高25 \%的增益。
This paper extends the paradigm of "mobile edge learning (MEL)" by designing an optimal task allocation scheme for training a machine learning model in an asynchronous manner across mutiple edge nodes or learners connected via a resource-constrained wireless edge network. The optimization is done such that the portion of the task allotted to each learner is completed within a given global delay constraint and a local maximum energy consumption limit. The time and energy consumed are related directly to the heterogeneous communication and computational capabilities of the learners; i.e. the proposed model is heterogeneity aware (HA). Because the resulting optimization is an NP-hard quadratically-constrained integer linear program (QCILP), a two-step suggest-and-improve (SAI) solution is proposed based on using the solution of the relaxed synchronous problem to obtain the solution to the asynchronous problem. The proposed HA asynchronous (HA-Asyn) approach is compared against the HA synchronous (HA-Sync) scheme and the heterogeneity unaware (HU) equal batch allocation scheme. Results from a system of 20 learners tested for various completion time and energy consumption constraints show that the proposed HA-Asyn method works better than the HU synchronous/asynchronous (HU-Sync/Asyn) approach and can provide gains of up-to 25\% compared to the HA-Sync scheme.