论文标题

HEM3D:基于单片3D垂直整合的异质多核体系结构

HeM3D: Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration

论文作者

Arka, Aqeeb Iqbal, Joardar, Biresh Kumar, Kim, Ryan Gary, Kim, Dae Hyun, Doppa, Janardhan Rao, Pande, Partha Pratim

论文摘要

异类多核体系结构是有效执行计算和数据密集型应用程序的关键。通过基于硅的(TSV)基于3D的3D多核系统是一个有前途的解决方案,因为它可以在单个系统上整合不同的计算核心。但是,基于传统的通过 - 基利康维亚(TSV)的3D系统的可实现性能最终被水平电线瓶颈(每个平面模具中的电线)。此外,当前的TSV 3D体系结构受热限制。因此,基于TSV的架构并没有意识到3D集成的全部潜力。整体式3D(M3D)集成,一种实现的突破性技术 - 更多的摩尔和更多的摩尔 - 并通过利用整体层间vias(MIV)(MIVS)来打开使用多层设计核心和相关的网络路由器的可能性,因此可以减少有效的线长度。与基于TSV的3D IC相比,M3D为系统集成提供了垂直维度的真正好处:M3D中使用的MIV的大小比TSV小100倍以上。在这项工作中,我们演示了支持M3D的垂直核心和未核心元素如何与基于TSV的对应物相比,多核异质体系结构提供了显着的性能和热改善。为了克服由于基于M3D的多核芯片的异质组件(CPU,GPU,LAST CACHE等)之间的较大设计空间和复杂的相互作用而引起的困难优化挑战,我们利用新颖的设计空间探索算法来取代不同的目标。拟议的称为HEM3D的M3D启用的异质体系结构的表现优于其最先进的TSV等效型,在执行时间内最多高达18.3%,而最高为19度Celcius Cooler。

Heterogeneous manycore architectures are the key to efficiently execute compute- and data-intensive applications. Through silicon via (TSV)-based 3D manycore system is a promising solution in this direction as it enables integration of disparate computing cores on a single system. However, the achievable performance of conventional through-silicon-via (TSV)-based 3D systems is ultimately bottlenecked by the horizontal wires (wires in each planar die). Moreover, current TSV 3D architectures suffer from thermal limitations. Hence, TSV-based architectures do not realize the full potential of 3D integration. Monolithic 3D (M3D) integration, a breakthrough technology to achieve - More Moore and More Than Moore - and opens up the possibility of designing cores and associated network routers using multiple layers by utilizing monolithic inter-tier vias (MIVs) and hence, reducing the effective wire length. Compared to TSV-based 3D ICs, M3D offers the true benefits of vertical dimension for system integration: the size of a MIV used in M3D is over 100x smaller than a TSV. In this work, we demonstrate how M3D-enabled vertical core and uncore elements offer significant performance and thermal improvements in manycore heterogeneous architectures compared to its TSV-based counterpart. To overcome the difficult optimization challenges due to the large design space and complex interactions among the heterogeneous components (CPU, GPU, Last Level Cache, etc.) in an M3D-based manycore chip, we leverage novel design-space exploration algorithms to trade-off different objectives. The proposed M3D-enabled heterogeneous architecture, called HeM3D, outperforms its state-of-the-art TSV-equivalent counterpart by up to 18.3% in execution time while being up to 19 degrees Celcius cooler.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源