论文标题
用欧拉运动场来动画图片
Animating Pictures with Eulerian Motion Fields
论文作者
论文摘要
在本文中,我们演示了一种将静物图像转换为逼真的动画循环视频的全自动方法。我们以连续的流体运动(例如流动的水和滚滚烟雾)来瞄准场景。我们的方法依赖于这样的观察结果,即可以从静态的Eulerian运动描述中有说服力地再现这种类型的自然运动,即单个恒定的流动场,该流场定义了粒子在给定2D位置的立即运动。我们使用图像到图像翻译网络来编码从在线视频中收集的自然场景的运动先验,因此,对于新照片,我们可以合成相应的运动场。然后,使用深层翘曲技术生成的运动来对图像进行动画:像素被编码为深度特征,这些特征是通过Eulerian Motion扭曲的,并且所得的扭曲功能映射被解码为图像。为了产生连续的,无缝循环的视频纹理,我们提出了一种新颖的视频循环技术,该技术在时间上流动的特征是向前和向后的,然后将结果融合在一起。我们通过将其应用于包括海滩,瀑布和流动的河流在内的大量例子中,证明了我们方法的有效性和鲁棒性。
In this paper, we demonstrate a fully automatic method for converting a still image into a realistic animated looping video. We target scenes with continuous fluid motion, such as flowing water and billowing smoke. Our method relies on the observation that this type of natural motion can be convincingly reproduced from a static Eulerian motion description, i.e. a single, temporally constant flow field that defines the immediate motion of a particle at a given 2D location. We use an image-to-image translation network to encode motion priors of natural scenes collected from online videos, so that for a new photo, we can synthesize a corresponding motion field. The image is then animated using the generated motion through a deep warping technique: pixels are encoded as deep features, those features are warped via Eulerian motion, and the resulting warped feature maps are decoded as images. In order to produce continuous, seamlessly looping video textures, we propose a novel video looping technique that flows features both forward and backward in time and then blends the results. We demonstrate the effectiveness and robustness of our method by applying it to a large collection of examples including beaches, waterfalls, and flowing rivers.