论文标题
BACCO仿真项目:具有神经网络的Baryonification仿真器
The BACCO Simulation Project: A baryonification emulator with Neural Networks
论文作者
论文摘要
我们提出了一种神经网络模拟器,以实现非线性物质功率谱系中的重体效应。我们在15维参数空间中使用超过50,000个测量值校准了该模拟器,变化的宇宙学和男性化物理学。 Baryonic物理学是通过一种Baryonification算法来描述的,该算法已被证明可以准确捕获对最先进的流体动力学模拟中功率谱和双光谱的相关作用。宇宙学参数使用宇宙学的方法进行采样,包括大量中微子和动态暗能量。我们效仿的特定数量是物质功率谱与重力和重力之间的比率,我们估计模拟器的总体精度为1-2%,在所有尺度上为0.01 <k <5 h/mpc和红移0 <z <z <1.5。当测试模拟器针对74种不同的宇宙流体动力学模拟及其相应的仅重力对应物的集合时,我们还获得了1-2%的精度。我们还显示,只有一个Baryonic参数,即设置每个光环质量的气体分数的MC,足以在给定时期对Baryonic反馈进行准确和现实的预测。我们的仿真器将在http://www.dipc.org/bacco公开使用。
We present a neural-network emulator for baryonic effects in the non-linear matter power spectrum. We calibrate this emulator using more than 50,000 measurements in a 15-dimensional parameters space, varying cosmology and baryonic physics. Baryonic physics is described through a baryonification algorithm, that has been shown to accurately capture the relevant effects on the power spectrum and bispectrum in state-of-the-art hydrodynamical simulations. Cosmological parameters are sampled using a cosmology-rescaling approach including massive neutrinos and dynamical dark energy. The specific quantity we emulate is the ratio between matter power spectrum with baryons and gravity-only, and we estimate the overall precision of the emulator to be 1-2%, at all scales 0.01 < k < 5 h/Mpc, and redshifts 0 < z < 1.5. We also obtain an accuracy of 1-2%, when testing the emulator against a collection of 74 different cosmological hydrodynamical simulations and their respective gravity-only counterparts. We show also that only one baryonic parameter, namely Mc, which set the gas fraction retained per halo mass, is enough to have accurate and realistic predictions of the baryonic feedback at a given epoch. Our emulator will become publicly available in http://www.dipc.org/bacco.