论文标题
大数据驱动的自动化异常检测和移动网络中的性能预测
Big Data-driven Automated Anomaly Detection and Performance Forecasting in Mobile Networks
论文作者
论文摘要
操作移动网络中可用的大量数据为操作员提供了无价的机会,可以检测和分析可能的异常并预测网络性能。特别是,在从多个来源汇总的数据上应用高级机器学习(ML)技术不仅可以导致重要见解,这不仅是针对异常行为的检测,而且还可以进行性能预测,从而补充经典网络操作和使用智能监控工具的维护解决方案。在本文中,我们提出了一个新颖的框架,该框架汇总了从操作LTE网络的各种数据集(例如配置,性能,库存,位置,用户速度),并应用ML算法来诊断网络问题并分析其对主要性能指标的影响。为此,在摄入的数据上使用了模式识别和时间序列预测算法。结果表明,确实可以利用提出的框架来自动化与空间特征相关的异常行为的识别,并以准确的方式预测客户的影响。
The massive amount of data available in operational mobile networks offers an invaluable opportunity for operators to detect and analyze possible anomalies and predict network performance. In particular, application of advanced machine learning (ML) techniques on data aggregated from multiple sources can lead to important insights, not only for the detection of anomalous behavior but also for performance forecasting, thereby complementing classic network operation and maintenance solutions with intelligent monitoring tools. In this paper, we propose a novel framework that aggregates diverse data sets (e.g. configuration, performance, inventory, locations, user speeds) from an operational LTE network and applies ML algorithms to diagnose network issues and analyze their impact on key performance indicators. To this end, pattern identification and time-series forecasting algorithms are used on the ingested data. Results show that proposed framework can indeed be leveraged to automate the identification of anomalous behaviors associated with the spatial-temporal characteristics, and predict customer impact in an accurate manner.