论文标题

无人驾驶的蜂窝手机卸载中的诺玛:一种机器学习方法

NOMA in UAV-aided cellular offloading: A machine learning approach

论文作者

Zhong, Ruikang, Liu, Xiao, Liu, Yuanwei, Chen, Yue

论文摘要

提出了一个新颖的框架,用于借助多个无人机(UAV),用于细胞卸载,而在每个无人机上采用了非正交多访问(NOMA)技术,以进一步提高无线网络的光谱效率。制定了连接三维(3D)轨迹设计和功率分配的优化问题,以最大程度地提高吞吐量。为了解决这个相关的动态问题,首先采用了基于K-均基于K均值的聚类算法来定期分区用户。之后,提出了相互深度Q-NETWORK(MDQN)算法共同确定无人机的最佳3D轨迹和功率分配。与传统的深Q网络(DQN)算法相反,MDQN算法使多机构的经验能够在共享的神经网络中输入,以在国家抽象的帮助下缩短培训时间。数值结果表明:1)在多代理情况下,提出的MDQN算法比常规DQN算法的收敛速率快; 2)NOMA增强无人机网络的可实现的总和率为$ 23 \%$优于正交多重访问的情况(OMA); 3)通过在MDON算法的帮助下设计无人机的最佳3D轨迹,网络的总和率分别比调用循环轨迹和2D轨迹的网络享有$ {142 \%} $和$ {56 \%} $的收益。

A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs), while non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network. The optimization problem of joint three-dimensional (3D) trajectory design and power allocation is formulated for maximizing the throughput. In an effort to solve this pertinent dynamic problem, a K-means based clustering algorithm is first adopted for periodically partitioning users. Afterward, a mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs. In contrast to the conventional deep Q-network (DQN) algorithm, the MDQN algorithm enables the experience of multi-agent to be input into a shared neural network to shorten the training time with the assistance of state abstraction. Numerical results demonstrate that: 1) the proposed MDQN algorithm has a faster convergence rate than the conventional DQN algorithm in the multi-agent case; 2) The achievable sum rate of the NOMA enhanced UAV network is $23\%$ superior to the case of orthogonal multiple access (OMA); 3) By designing the optimal 3D trajectory of UAVs with the aid of the MDON algorithm, the sum rate of the network enjoys ${142\%}$ and ${56\%}$ gains than that of invoking the circular trajectory and the 2D trajectory, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源