论文标题

Geodynamo模拟中的力量平衡和流长尺度

Relating force balances and flow length scales in geodynamo simulations

论文作者

Schwaiger, Tobias, Gastine, Thomas, Aubert, Julien

论文摘要

在流体动力学中,流量长度尺度的缩放行为通常用于推断系统的统治力平衡。成功方法的关键是测量代表解决方案中包含的能量的长度尺度(能量相关),并指示已建立的力平衡(动态相关)。在球形壳中的旋转对流和磁动力动力的旋转的数值模拟中,很难测量能量和动态相关的长度尺度,这导致了对基本力平衡的矛盾解释。通过分析一组广泛的磁性和非磁模型,我们专注于两个长度尺度,既可以实现能量和动态相关性。第一个是多型动能光谱的峰,我们成功地将其与力平衡光谱表示上的跨界点进行了比较。在大多数发电机模型中,该结果证实了系统的主要长度尺度由准地藻(QG-)MAC(磁极 - 近距离型)平衡控制。在非磁对流模型中,分析有利于QG-CIA(Coriolis intia-Archimedean)平衡。在Dynamo模型中,我们引入了与流动中轴向不变性损失相关的第二次能量相关的长度尺度。我们再次将这个长度尺度与比例依赖性力平衡图中的交叉点联系起来,这标志着大规模地球植物(科里奥利和压力力的平衡)与小规模磁体的过渡之间的过渡,洛伦兹力量在其中超过了科里奥利的力量。对这两个的缩放分析在能量和动态相关的长度尺度上表明,地球的发电机受QG-MAC平衡的控制,在约200 km的主要尺度上,而磁性效应则将其延迟到小于50 km的尺度。

In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer the governing force balance of a system. The key to a successful approach is to measure length scales that are representative of the energy contained in the solution (energetically relevant) and indicative of the established force balance (dynamically relevant). In numerical simulations of rotating convection and magneto-hydrodynamic dynamos in spherical shells, it has remained difficult to measure length scales that are both energetically and dynamically relevant, which has led to conflicting interpretations of the underlying force balance. By analysing an extensive set of magnetic and non-magnetic models, we focus on two length scales that achieve both energetic and dynamical relevance. The first one is the peak of the poloidal kinetic energy spectrum, which we successfully compare to crossover points on spectral representations of the force balance. In most dynamo models, this result confirms that the dominant length scale of the system is controlled by a quasi-geostrophic (QG-) MAC (Magneto-Archimedean-Coriolis) balance. In non-magnetic convection models, the analysis favours a QG-CIA (Coriolis-Inertia-Archimedean) balance. In dynamo models, we introduce a second energetically relevant length scale associated with the loss of axial invariance in the flow. We again relate this length scale to a crossover point in scale-dependent force balance diagrams, which marks the transition between large-scale geostrophy (the equilibrium of Coriolis and pressure forces) and small-scale magnetostrophy, where the Lorentz force overtakes the Coriolis force. Scaling analysis of these two energetically and dynamically relevant length scales suggests that the Earth's dynamo is controlled by a QG-MAC balance at a dominant scale of about 200 km, while magnetostrophic effects are deferred to scales smaller than 50 km.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源