论文标题
Hybrik:用于3D人姿势和形状估计的混合分析神经逆运动溶液
HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation
论文作者
论文摘要
基于模型的3D姿势和形状估计方法通过估计几个参数来重建人体的完整3D网格。但是,学习抽象参数是一个高度非线性的过程,并且遭受了图像模型未对准,导致平庸的模型性能。相比之下,3D关键点估计方法将深CNN网络与体积表示结合在一起,以实现像素级定位精度,但可能预测了不切实际的身体结构。在本文中,我们通过弥合身体网格估计和3D关键点估计之间的差距来解决上述问题。我们提出了一种新型的混合逆动力学解决方案(Hybrik)。 Hybrik通过扭转和旋转分解直接将精确的3D关节转换为3D身体网状重建的相对身体零件旋转。挥杆旋转通过3D接头分析求解,扭转旋转是从视觉提示通过神经网络得出的。我们表明,Hybrik保留了3D姿势的准确性和参数人类模型的实际体型结构,从而导致与Pure 3D KeyPoint估计方法相比,与Pixel平衡的3D身体网格和更准确的3D姿势。没有铃铛和哨子,提出的方法在各种3D人体姿势和形状基准上的边距大大超过了最先进的方法。作为一个说明性的示例,Hybrik在3DPW数据集上以13.2 mm mpjpe和21.9 mm PVE优于所有先前的方法。我们的代码可从https://github.com/jeff-sjtu/hybrik获得。
Model-based 3D pose and shape estimation methods reconstruct a full 3D mesh for the human body by estimating several parameters. However, learning the abstract parameters is a highly non-linear process and suffers from image-model misalignment, leading to mediocre model performance. In contrast, 3D keypoint estimation methods combine deep CNN network with the volumetric representation to achieve pixel-level localization accuracy but may predict unrealistic body structure. In this paper, we address the above issues by bridging the gap between body mesh estimation and 3D keypoint estimation. We propose a novel hybrid inverse kinematics solution (HybrIK). HybrIK directly transforms accurate 3D joints to relative body-part rotations for 3D body mesh reconstruction, via the twist-and-swing decomposition. The swing rotation is analytically solved with 3D joints, and the twist rotation is derived from the visual cues through the neural network. We show that HybrIK preserves both the accuracy of 3D pose and the realistic body structure of the parametric human model, leading to a pixel-aligned 3D body mesh and a more accurate 3D pose than the pure 3D keypoint estimation methods. Without bells and whistles, the proposed method surpasses the state-of-the-art methods by a large margin on various 3D human pose and shape benchmarks. As an illustrative example, HybrIK outperforms all the previous methods by 13.2 mm MPJPE and 21.9 mm PVE on 3DPW dataset. Our code is available at https://github.com/Jeff-sjtu/HybrIK.