论文标题

通过降低速率增量学习

Incremental Learning via Rate Reduction

论文作者

Wu, Ziyang, Baek, Christina, You, Chong, Ma, Yi

论文摘要

当前的深度学习体系结构遭受灾难性遗忘的困扰,在接受新课程的逐步培训时,未能保留以前学习的课程的知识。深度学习方法面临的基本障碍是,深度学习模型被优化为“黑匣子”,因此很难正确调整模型参数以保留有关先前看到的数据的知识。为了克服灾难性遗忘的问题,我们提出了从降低速率原理中得出的另一种“白盒”架构,其中明确计算了网络的每一层而无需背部传播。在此范式下,我们证明,鉴于预先培训的网络和新的数据类,我们的方法可以构建一个新的网络,以模拟与过去和新类别的联合培训。最后,我们的实验表明,我们提出的学习算法观察到分类性能的衰减明显较小,通过较大的边距胜过MNIST和CIFAR-10的最先进的方法,并证明使用“白盒”算法是合理的,即使对于足够复杂的图像数据,也可以使用“白盒”算法来增量学习。

Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes. The fundamental roadblock faced by deep learning methods is that deep learning models are optimized as "black boxes," making it difficult to properly adjust the model parameters to preserve knowledge about previously seen data. To overcome the problem of catastrophic forgetting, we propose utilizing an alternative "white box" architecture derived from the principle of rate reduction, where each layer of the network is explicitly computed without back propagation. Under this paradigm, we demonstrate that, given a pre-trained network and new data classes, our approach can provably construct a new network that emulates joint training with all past and new classes. Finally, our experiments show that our proposed learning algorithm observes significantly less decay in classification performance, outperforming state of the art methods on MNIST and CIFAR-10 by a large margin and justifying the use of "white box" algorithms for incremental learning even for sufficiently complex image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源