论文标题
模块化环中的furstenberg-sárközy定理和渐近的总牙齿现象
The Furstenberg-Sárközy Theorem and Asymptotic Total Ergodicity Phenomena in Modular Rings
论文作者
论文摘要
furstenberg-sárközy定理断言,差异设置了一个子集$ e \ subset \ subset \ mathbb {n} $的$ e-e $与正密度的正相交,可与任何polynomial $ p \ in \ mathbb {z} [z} [n] $的图像集相交。 Furstenberg的方法依赖于对应原理和Poincaré复发定理的多项式版本,该定理源自Ergodic Wheoretic的结果,该结果对于任何措施提供系统$(x,x,\ nathcal {b},μ,μ,t)$和set $ a \ in \ mathcal with \ n $ a $ a $ c $ c $ c $ c $ c $ cy( \ lim_ {n \ to \ infty} \ frac {1} {n} \ sum_ {n = 1}^nμ(a \ cap t^{ - p(n)} a)>0。$ limit of $ c(a)$将具有$μ(a)^2 $的最佳值为$ t $的最佳值。在新组合应用的可能性中,我们在模块化环的设置$ \ mathbb {z}/n \ mathbb {z} $的情况下定义了渐近总呈现的概念。我们表明,一系列模块化环$ \ mathbb {z}/n_m \ mathbb {z} $,$ m \ in \ mathbb {n}中,$仅当$ andrm {lpf}(lpf}(lpf}(n_m)$,$ n__mm $ n __mmmm $ n __mmmm $ n __mmmm $ n __mmmm $ n __mmmm $ n __mmm $ n __mmm $ n_mmm $ nd__mmm $ n_mmm $ n __mmm $ n _ __mmmm $ nd__mmm $ n __mmmm $ n ___mmmm $ n_mmmm $从这个事实中,我们得出了一些组合后果,例如以下内容。修复$Δ\ in(0,1] $和a(不一定是相互作用的)polyenmial $ q \ in \ mathbb {q} [n] $,这样,$ q(\ supbb {z})\ subseteq \ subseteq \ subseteq \ mathbb {z} $ \ MathBb {Z}/N \ MathBb {Z} \} $ $ \ mathbb {z}/n \ mathbb {z} = a + b + s $。
The Furstenberg-Sárközy theorem asserts that the difference set $E-E$ of a subset $E \subset \mathbb{N}$ with positive upper density intersects the image set of any polynomial $P \in \mathbb{Z}[n]$ for which $P(0)=0$. Furstenberg's approach relies on a correspondence principle and a polynomial version of the Poincaré recurrence theorem, which is derived from the ergodic-theoretic result that for any measure-preserving system $(X,\mathcal{B},μ,T)$ and set $A \in \mathcal{B}$ with $μ(A) > 0$, one has $c(A):= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N μ(A \cap T^{-P(n)}A) > 0.$ The limit $c(A)$ will have its optimal value of $μ(A)^2$ when $T$ is totally ergodic. Motivated by the possibility of new combinatorial applications, we define the notion of asymptotic total ergodicity in the setting of modular rings $\mathbb{Z}/N\mathbb{Z}$. We show that a sequence of modular rings $\mathbb{Z}/N_m\mathbb{Z}$, $m \in \mathbb{N},$ is asymptotically totally ergodic if and only if $\mathrm{lpf}(N_m)$, the least prime factor of $N_m$, grows to infinity. From this fact, we derive some combinatorial consequences, for example the following. Fix $δ\in (0,1]$ and a (not necessarily intersective) polynomial $Q \in \mathbb{Q}[n]$ such that $Q(\mathbb{Z}) \subseteq \mathbb{Z}$, and write $S = \{ Q(n) : n \in \mathbb{Z}/N\mathbb{Z}\}$. For any integer $N > 1$ with $\mathrm{lpf}(N)$ sufficiently large, if $A$ and $B$ are subsets of $\mathbb{Z}/N\mathbb{Z}$ such that $|A||B| \geq δN^2$, then $\mathbb{Z}/N\mathbb{Z} = A + B + S$.